
4/3/2015 HRT_C_&_C++_MSAllInOneStandard_SCRF_Template_17Jan2014.xls

Description

Company: Company Name
Program: Program Name
Language: C#
Last Version Complete: XXX

Revision
History

Code Review
Rev No.

Purpose/Description Program Version Reviewer Start Date End Date Peer Reviewer Peer Review
Date

Date Rev
4/30/2008 05-02

TEMPLATE Approver
John Schweitzer

SLI Confidential Template Rev 05-02, 4/17/2008 Page 1 of 14

4/3/2015 HRT_C_&_C++_MSAllInOneStandard_SCRF_Template_17Jan2014.xls

Language Less than 60+N/A 60 to 120 120 to 240 More than 240 Total
C# #REF! #REF! #REF! #REF! #REF!
Total % #REF! #REF! #REF! #REF! #REF!

Code Review Supervisor: Replace example languages and insert lines as needed. When the reports are compiled, link the
cells in the table below to the appropriate spreadsheet files.

File's Functions Line Count Consolidated Report for

On the Application level, no more than 50%
exceeding 60 lines, no more than 5%
exceeding 120 lines, and none exceeding 240

Company Name, Program Name

SLI Confidential Template Rev 05-02, 4/17/2008 Page 2 of 14

4/3/2015 HRT_C_&_C++_MSAllInOneStandard_SCRF_Template_17Jan2014.xls

VVSG Section VVSG v.1:
5.2.2

VVSG v.1:
5.2.3.a

VVSG v.1:
5.2.3.b

Verity Std sec.:
3.3.1

Hart Verity
Coding Std
sec.:
3.2

VVSG v.1:
5.2.3.b
5.2.7.a

General Description Review
Date

Reviewer
Name

Program
Name

Program Version TDP Date File Path File name Class or Function
name

Self-
modifying
code

Specific
function

Module has
unique
name

Meaningful
names

Hart
Naming
Convention
s

Module has header

VVSG or Standard
Description

Self-
modifying,
dynamically
loaded, or
interpreted
code is
prohibited

Module
performs a
specific
function

Uniquely
and
mnemonicall
y named
using
names that
differ by
more than a
single
character

Do use
meaningful
names for
various types,
functions,
variables,
constructs and
data
structures.
Their use
should be
plainly
discernable
from their
name alone.

3.2.1 Use
PascalCasin
g for classes
enumeration
s, methods ,
functions,
public
properties,
events,
resources,
and
externally
visible
constants in
C#.
3.2.2 Use
PascalCasin
g preceded
by ‘I’ for
interfaces
3.2.3 Use
PascalCasin
g preceded
by ‘T’ for
templates
and generic
type
parameters
3.2.4 Use all
capital
letters
separated
by
underscores
for

Header describes
purpose, other units
needed, inputs,
outputs, files read or
written, globals,
revision records (for
modules greater than
10 lines)
Header comments shall
provide the following
information:
1) The purpose of the
unit and how it works;
2) Other units called
and the calling
sequence;
3) A description of
input parameters and
outputs;
4) File references by
name and method of
access (read, write,
modify , append, etc.);
5) Global variables
used; and
6) Date of creation and
a revision record;

Language or Vendor
Adjustments

Hart uses /// comments
for classes, properties,
and methods

Total Accept 0 0 0 0 0 0
Total Reject 0 0 0 0 0 0
Total N/A 0 0 0 0 0 0
Total Blank 5 5 5 5 5 5
Total 5 5 5 5 5 5

SLI Confidential Template Reve05-02, 4/17/2008 Page 3

4/3/2015 HRT_C_&_C++_MSAllInOneStandard_SCRF_Template_17Jan2014.xls

VVSG v.1:
5.2.3.c

VVSG v.1:
5.2.3.e

VVSG v.1:
5.2.3.e

VVSG v.1:
5.2.3.f

VVSG v.1:
5.2.4.a

VVSG v.1:
5.2.4.I

VVSG v.1:
5.2.4.ii

VVSG v.1:
5.2.4.iii

MS Std sec.:
2.2

Verity Std
sec.:
2.1

MS Std sec.:
2.5

MS Std sec.:
2.5

Verity Std
sec.: 3.8.4

MS Std sec.:
2.6

MS Std sec.:
2.7

MS Std sec.:
2.8

MS Std sec.:
2.8.1

Required
resources

Single
Entry Point

Single Exit
Point

Control
structures

Acceptable
Constructs

Vendor
Defined
Constructs
with
Justificatio
n

Execution
through
Control
Constructs

Program re-
direction

Do not use tabs Line length Local
variables
have
minimum
scope

Local
variable
declaration
and
initialization

Initialize
pointer
variables

Parameters
ordered in
groups

One
statement
per line

Use enums Flag enums

All required
resources,
such as
data
accessed by
the module,
should
either be
contained
within the
module or
explicitly
identified

Module has
a single
entry point

Module has
a single exit
point

Sequence,
Conditionals
, Top &
Bottom
tested
loops,
Switch..Cas
e, For loops

Acceptable
constructs
are
Sequence, If-
Then-Else,
Do-While,
Do-Until,
Case, and
the General
loop
(including
the special
case for
loop);

Note: This
criteria will
be "Accept"
except in
the case
where the
vendor
defines
code
constructs.

If the
programmin
g language
used does
not provide
these
control
constructs,
the vendor
shall
provide
them (that
is,
comparable
control
structure
logic). The
constructs
shall be
used
consistently
throughout
the code.
No other
constructs
shall be
used to
control
program
logic and
execution;

While some
programmin
g languages
do not
create
programs as
linear
processes,
stepping
from an
initial
condition,
through
changes, to
a
conclusion,
the program
components
nonetheless
contain
procedures
(such as
“methods” in
object-
oriented
languages).
Even in
these
programmin
g
languages,
the
procedures
must
execute

Logic that
evaluates
received or
stored data
shall not re-
direct
program
control

All code should
be written using
four spaces for
indentation.

Maximum
line length
is 90
characters
for C/C++

Do declare
local
variables in
the minimum
scope block
that can
contain them,
typically just
before use if
the language
allows;
otherwise, at
the top of that
scope block

Do initialize
variables
when they
are declared.
Do declare
and
initialize/assi
gn local
variables on
a single line
where the
language
allows it.
Do not
declare
multiple
variables in a
single line.

Initialize
pointers
(when) they
are declared
(and) set
them to NULL
after freeing
them.

Do order
parameters,
grouping the
in parameters
first, the out
parameters
last.

Do not put
more than
one
statement on
a single line

Do use an
enum to
strongly type
parameters,
properties,
and return
values that
represent
sets of
values.
Do not use an
enum for
open sets.
Do not use
Enum.IsDefin
ed for enum
range checks
in .NET.

Do apply the
System.Flags
Attribute to
flag enums in
.NET. Do not
apply this
attribute to
simple
enums.
Do use
powers of two
for the flags
enum values.

Hart allows
150 chars
per line for
C# and

Very similar
to MS Std
sec.: 4.9.4

N/A
N/A
N/A
N/A
N/A

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0
5 5 5 5 5 0 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

SLI Confidential Template Reve05-02, 4/17/2008 Page 4

4/3/2015 HRT_C_&_C++_MSAllInOneStandard_SCRF_Template_17Jan2014.xls

MS Std sec.:
2.10

Verity Std
sec.: 3.7.3

MS Std sec.:
2.11.2

MS Std sec.:
2.11.6

MS Std sec.:
3.1.1

MS Std sec.:
3.2.2

MS Std sec.:
3.5
3.10

MS Std sec.:
3.7

MS Std sec.:
3.7,
3.9.1

MS Std sec.:
3.8

MS Std sec.:
3.10

MS Std sec.:
3.11.1

MS Std sec.:
3.11.2

MS Std sec.:
3.11.5

MS Std sec.:
3.12.2

MS Std sec.:
3.12.3

MS Std sec.:
3.13.1

Braces and
indentation

Braces
around
single line
conditionals

File has
header
comments

TODO
comments

Precompiled
Header

Include guards
within header
files

Define
named
constants as
‘const’
values

Use
sizeof(var)

Use
ARRAYSIZE
for arrays

UNICODE
code

Macros Validating
Parameters

Reference
Parameters

Return
Values

Structure
Initializatio
n

Structs vs.
Classes
with no
methods

Data Members

Do use
Allman
bracing style.
The style puts
the brace
associated
with a control
statement on
the next line,
indented to
the same
level as the
control
statement.
Statements
within the
braces are
indented to
the next level.

Use braces
around single
line
conditionals

Do have a file
header
comment at
the start of
every human-
created code
file. The
header
comment
templates are
as follows:

/***************
***\
Module
Name: <File
Name>
Project:
<Sample
Name>
<Description
of the file>

***/

Do not use
TODO
comments in
any released
samples

Do not use
precompiled
headers.
Remove
#include<stda
fx.h> from all
source files.

Do use include
guards within a
header file
(internal include
guards) to
prevent
unintended
multiple
inclusions of the
header file

Do define
named
constants as
‘const’
values,
instead of
“#define”
values.

Do not use
“#define”
values for
constant
values.

Do use
sizeof(var)
instead of
sizeof(TYPE)
whenever
possible. To
be explicit
about the size
value being
used whenever
possible write
sizeof(var)
instead of
sizeof(TYPE_
OF_VAR). Do
not code the
known size or
type of the
variable. Do
reference the
variable name
instead of the
variable type in
sizeof.

Do not use
sizeof for
arrays to get
the element
number. Use
ARRAYSIZE.

Do use
ARRAYSIZE()
as the
preferred way
to get the size
of an array.
Do derive the
array size from
the variable
rather than
specifying the
size in your
code.

Do write
explicitly
UNICODE
code. Don’t
use TCHAR
or ANSI
code. This
means:
Use the
wide char
types
including
wchar_t,
PWSTR,
PCWSTR
instead of
the TCHAR
versions.
Don’t use
the TEXT
macro,
instead use
the L prefix
for creating
Unicode
string
constants
L”string
value”.

Do not use
the following
existing
macros:
SIZEOF(),
IID_PPV_A
RG() (use
IID_PPV_A
RGS()
instead)

Do validate
parameters
to functions
that will be
used by the
public.

Do not use
ref
parameters
for output
because it
makes it
hard to
determine
whether a
variable is
modified (an
output) at
the call site.
Use pointers
instead.

Do test the
return of a
function, not
the out
parameters,
in the caller.

Do use "=
{}" to zero
structure
memory.

Do use a
structure to
define a
data
aggregate
that does
not contain
functions.
Use a class
if and only if
there are
member
functions
included.

Do not declare
public data
members. Use
inline accessor
functions for
performance.
Do initialize
member variables
in the same order
that they were
defined in the
class declaration.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

SLI Confidential Template Reve05-02, 4/17/2008 Page 5

4/3/2015 HRT_C_&_C++_MSAllInOneStandard_SCRF_Template_17Jan2014.xls

MS Std sec.:
3.13.2

MS Std sec.:
3.13.3

MS Std
sec.:
3.13.4

MS Std
sec.:
3.13.5

MS Std
sec.:
3.13.6

MS Std sec.:
3.13.7

MS Std sec.:
3.14.1

MS Std sec.:
3.14.3

MS Std sec.:
3.15

MS Std sec.:
3.16.1

MS Std sec.:
3.16.2

MS Std sec.:
3.17

Hart Verity
Coding Std sec.:
2.2.2

Constructo
rs

Destructors Overloade
d
Operators

Overloade
d
Function
Parameter
s

Virtual
Functions

Abstract
Classes

COM
Interfaces

COM
Classes

Allocations Errors Exceptions Resource
Cleanup

Methods and
Functions must
be less than 240
lines

Disc. # Description Date
Opened

Do define
copy
constructors
as taking a
‘const’
reference
type.
Do define all
single
parameter
constructors
, by default,
with the
‘explicit’
keyword, so
that they are
not
conversion
constructors
.

Do use a destructor
to centralize the
resource cleanup of a
class that is freed via
delete. If resources
are freed before
destruction, make
sure the fields are
reset (e.g. set
pointers to NULL) so
that a destructor will
not try to free them
again.
Do declare the
destructor as "virtual"
for classes that
contain at least one
other virtual function.
If the class does not
contain any virtual
functions, then do not
declare the
destructor as virtual.

Do not
overload
operator&
&,
operator||
or
operator,.
Do not
change
the
semantics
of the
operators
if you
choose to
overload
them. For
example,
do not re-
purpose
the ‘+’
operator
for
performing
subtraction
.

Do not
arbitrarily
vary
parameter
names in
overloads.
If a
parameter
in one
overload
represents
the same
input as a
parameter
in another
overload,
the
parameter
s should
have the
same
name.
Parameter
s with the
same
name
should
appear in
the same
position in
all
overloads.

Do use
virtual
functions
to
implement
polymorphi
sm

Do provide a
protected
constructor.
Do identify
abstract
methods by
making them
pure virtual.
Do provide a
public,
virtual
destructor if
you allow
deletion via
a pointer to
the abstract
class or a
protected,
non-virtual
destructor to
disallow
deletion via
a pointer to
the abstract
class.
Do explicitly
provide
protected
copy
constructor
and
assignment
operators or
private
unimplement

Do use
IFACEMTH
ODIMP and
IFACEMTH
ODIMP_ for
method
declarations
in COM
interfaces.
Do order
interface
methods in
your class
definition in
the same
order they
are declared
in their
definition.

Do declare
private
destructors
(or protected
if you expect
people to
derive from
you) for
classes that
implement
COM objects
that are
allocated on
the heap.
Do initialize
the m_cRef
to 1 on
construction
for classes
that
implement
COM object.
Do return an
HRESULT
from every
COM
method
(except
AddRef and
Release).

Do ensure
that all
allocated
memory is
freed using
the same
mechanisms
. Objects
allocated
using ‘new’
should be
freed with
‘delete’.
Allocations
made using
‘vector new’
should be
freed using
‘vector
delete’.

Do check
return values
for function
calls and
handle
errors
appropriatel
y.

Do throw
exceptions
by value and
catch
exceptions
by
reference.
When re-
throwing
exceptions
do re-throw
exceptions
using
“throw;”
instead of
“throw
<caught
exception>”.
Do not allow
exceptions
to be thrown
out of
destructors.
Do not use
“catch(…)”.G
eneral
exceptions
should not
be caught.
Only catch
the specific
exceptions
that the
function
knows how

Dynamically
allocated
memory /
resources
must be
appropriatel
y cleaned up
before you
exit from a
function

Executable code
in methods and
functions must
be less than 240
lines.

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
5 5 5 5 5 5 5
5 5 5 5 5 5 5

Discrepancy

SLI Confidential Template Reve05-02, 4/17/2008 Page 6

4/3/2015 HRT_C_&_C++_MSAllInOneStandard_SCRF_Template_17Jan2014.xls

TDP Date Reviewer
Name

Date
Closed

TDP Date Reviewer
Name

Notes

Fixed Discrepancy

SLI Confidential Template Reve05-02, 4/17/2008 Page 7

4/3/2015 HRT_C_&_C++_MSAllInOneStandard_SCRF_Template_17Jan2014.xls

Client Name: Company Name
Report Date:
Program: Program Name
Version: XXX
Programming Language: C#

Total Modules Reviewed 0
Total Modules with Discrepancy 0

VSS Req. Criterion Definition
Accept Reject

VVSG v.1:
5.2.2

Self-modifying code Self-modifying, dynamically loaded, or
interpreted code is prohibited

0 0

Accept Reject
VVSG v.1:
5.2.3.a

Specific function Module performs a specific function 0 0

VVSG v.1:
5.2.3.b

Module has unique name Uniquely and mnemonically named using
names that differ by more than a single
character

0 0

Source Code Review Detail

Vol. 1 Section 4.2.2-Integrity

Vol. 1 Section 4.2.3- Modularity

SLI Confidential Template Rev 05-02, 4/17/2008 Page 8 of 14

4/3/2015 HRT_C_&_C++_MSAllInOneStandard_SCRF_Template_17Jan2014.xls

VVSG v.1:
5.2.3.b
5.2.7.a

Module has header Header describes purpose, other units
needed, inputs, outputs, files read or
written, globals, revision records (for
modules greater than 10 lines)
Header comments shall provide the
following information:
1) The purpose of the unit and how it
works;
2) Other units called and the calling
sequence;
3) A description of input parameters and
outputs;
4) File references by name and method of
access (read, write, modify , append,
etc.);
5) Global variables used; and
6) Date of creation and a revision record;

0 0

VVSG v.1:
5.2.3.c

Required resources All required resources, such as data
accessed by the module, should either be
contained within the module or explicitly
identified

0 0

VVSG v.1:
5.2.3.e

Single Entry Point Module has a single entry point 0 0

VVSG v.1:
5.2.3.e

Single Exit Point Module has a single exit point 0 0

VVSG v.1:
5.2.3.f

Control structures Sequence, Conditionals, Top & Bottom
tested loops, Switch..Case, For loops

0 0

Accept Reject
VVSG v.1:
5.2.4.a

Acceptable Constructs Acceptable constructs are Sequence, If-
Then-Else, Do-While, Do-Until, Case, and
the General loop (including the special
case for loop);

Note: This criteria will be "Accept" except
in the case where the vendor defines
code constructs.

0 0
Vol. 1 Section 4.2.4-Control Constructs

SLI Confidential Template Rev 05-02, 4/17/2008 Page 9 of 14

4/3/2015 HRT_C_&_C++_MSAllInOneStandard_SCRF_Template_17Jan2014.xls

VVSG v.1:
5.2.4.I

Vendor Defined Constructs with
Justification

If the programming language used does
not provide these control constructs, the
vendor shall provide them (that is,
comparable control structure logic). The
constructs shall be used consistently
throughout the code. No other constructs
shall be used to control program logic and
execution;

0 0

VVSG v.1:
5.2.4.ii

Execution through Control
Constructs

While some programming languages do
not create programs as linear processes,
stepping from an initial condition, through
changes, to a conclusion, the program
components nonetheless contain
procedures (such as “methods” in object-
oriented languages). Even in these
programming languages, the procedures
must execute through these control
constructs (or their equivalents, as
defined and provided by the vendor);

0 0

VVSG v.1:
5.2.4.iii

Program re-direction Logic that evaluates received or stored
data shall not re-direct program control

0 0

Accept Reject
MS Std sec.:
2.2

Do not use tabs All code should be written using four
spaces for indentation.

0 0

Verity Std
sec.:
2.1

Line length Maximum line length is 90 characters for
C/C++

0 0

Accept Reject
MS Std sec.:
2.5

Local variables have minimum
scope

Do declare local variables in the minimum
scope block that can contain them,
typically just before use if the language
allows; otherwise, at the top of that scope
block

0 0

Vol. 1 Section 4.2.5-Naming Conventions

Vol. 1 Section 4.2.6-Coding Conventions

SLI Confidential Template Rev 05-02, 4/17/2008 Page 10 of 14

4/3/2015 HRT_C_&_C++_MSAllInOneStandard_SCRF_Template_17Jan2014.xls

MS Std sec.:
2.5

Local variable declaration and
initialization

Do initialize variables when they are
declared.
Do declare and initialize/assign local
variables on a single line where the
language allows it.
Do not declare multiple variables in a
single line.

0 0

MS Std sec.:
2.6

Parameters ordered in groups Do order parameters, grouping the in
parameters first, the out parameters last.

0 0

#REF! #REF! #REF! #REF! #REF!
MS Std sec.:
2.7

One statement per line Do not put more than one statement on a
single line

0 0

MS Std sec.:
2.8

Use enums Do use an enum to strongly type
parameters, properties, and return values
that represent sets of values.
Do not use an enum for open sets.
Do not use Enum.IsDefined for enum
range checks in .NET.

0 0

MS Std sec.:
2.8.1

Flag enums Do apply the System.FlagsAttribute to flag
enums in .NET. Do not apply this attribute
to simple enums.
Do use powers of two for the flags enum
values.

0 0

MS Std sec.:
2.10

Braces and indentation Do use Allman bracing style.
The style puts the brace associated with a
control statement on the next line,
indented to the same level as the control
statement. Statements within the braces
are indented to the next level.

0 0

SLI Confidential Template Rev 05-02, 4/17/2008 Page 11 of 14

4/3/2015 HRT_C_&_C++_MSAllInOneStandard_SCRF_Template_17Jan2014.xls

MS Std sec.:
2.11.2

File has header comments Do have a file header comment at the
start of every human-created code file.
The header comment templates are as
follows:

/******************\
Module Name: <File Name>
Project: <Sample Name>
<Description of the file>
******************/

0 0

MS Std sec.:
2.11.6

TODO comments Do not use TODO comments in any
released samples

0 0

MS Std sec.:
3.1.1

Precompiled Header Do not use precompiled headers.
Remove #include<stdafx.h> from all
source files.

0 0

MS Std sec.:
3.2.2

Include guards within header
files

Do use include guards within a header file
(internal include guards) to prevent
unintended multiple inclusions of the
header file

0 0

MS Std sec.:
3.5
3.10

Define named constants as
‘const’ values

Do define named constants as ‘const’
values, instead of “#define” values.

Do not use “#define” values for constant
values.

0 0

MS Std sec.:
3.7

Use sizeof(var) Do use sizeof(var) instead of
sizeof(TYPE) whenever possible. To be
explicit about the size value being used
whenever possible write sizeof(var)
instead of sizeof(TYPE_OF_VAR). Do not
code the known size or type of the
variable. Do reference the variable name
instead of the variable type in sizeof.

0 0

SLI Confidential Template Rev 05-02, 4/17/2008 Page 12 of 14

4/3/2015 HRT_C_&_C++_MSAllInOneStandard_SCRF_Template_17Jan2014.xls

MS Std sec.:
3.7,
3.9.1

Use ARRAYSIZE for arrays Do not use sizeof for arrays to get the
element number. Use ARRAYSIZE.

Do use ARRAYSIZE() as the preferred
way to get the size of an array.
Do derive the array size from the variable
rather than specifying the size in your
code.

0 0

MS Std sec.:
3.8

UNICODE code Do write explicitly UNICODE code. Don’t
use TCHAR or ANSI code. This means:
Use the wide char types including
wchar_t, PWSTR, PCWSTR instead of
the TCHAR versions.
Don’t use the TEXT macro, instead use
the L prefix for creating Unicode string
constants L”string value”.

0 0

MS Std sec.:
3.11.1

Validating Parameters Do validate parameters to functions that
will be used by the public.

0 0

MS Std sec.:
3.11.2

Reference Parameters Do not use ref parameters for output
because it makes it hard to determine
whether a variable is modified (an output)
at the call site. Use pointers instead.

0 0

#REF! #REF! #REF! 0 0
#REF! #REF! #REF! #REF! #REF!

MS Std sec.:
3.11.5

Return Values Do test the return of a function, not the
out parameters, in the caller.

0 0

MS Std sec.:
3.12.2

Structure Initialization Do use "= {}" to zero structure memory. 0 0

MS Std sec.:
3.12.3

Structs vs. Classes with no
methods

Do use a structure to define a data
aggregate that does not contain functions.
Use a class if and only if there are
member functions included.

0 0

Accept RejectVol. 1 Section 4.2.7 -Comments

SLI Confidential Template Rev 05-02, 4/17/2008 Page 13 of 14

4/3/2015 HRT_C_&_C++_MSAllInOneStandard_SCRF_Template_17Jan2014.xls

MS Std sec.:
3.13.1

Data Members Do not declare public data members. Use
inline accessor functions for performance.
Do initialize member variables in the
same order that they were defined in the
class declaration.

0 0

MS Std sec.:
3.13.2

Constructors Do define copy constructors as taking a
‘const’ reference type.
Do define all single parameter
constructors, by default, with the ‘explicit’
keyword, so that they are not conversion
constructors.

0 0

MS Std sec.:
3.13.3

Destructors Do use a destructor to centralize the
resource cleanup of a class that is freed
via delete. If resources are freed before
destruction, make sure the fields are reset
(e.g. set pointers to NULL) so that a
destructor will not try to free them again.
Do declare the destructor as "virtual" for
classes that contain at least one other
virtual function. If the class does not
contain any virtual functions, then do not
declare the destructor as virtual.

0 0

#REF! #REF! #REF! #REF! #REF!

Less than
60+N/A

60 to 120 120 to 240 More than
240

Total

#REF! #REF! #REF! #REF! #REF!
#REF! #REF! #REF! #REF! #REF!

#REF! #REF!#REF!

SLI Confidential Template Rev 05-02, 4/17/2008 Page 14 of 14

