
4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

Description

Company: Company Name
Program: Program Name
Language: C#
Last Version Complete: XXX

Revision
History

Code Review
Rev No.

Purpose/Description Program Version Reviewer Start Date End Date Peer Reviewer Peer Review
Date

Date Rev
4/30/2008 05-02

TEMPLATE Approver
John Schweitzer

SLI Confidential Template Rev 05-02, 4/17/2008 Page 1 of 18

4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

Language Less than 60+N/A 60 to 120 120 to 240 More than 240 Total
C# #REF! #REF! #REF! #REF! #REF!
Total % #REF! #REF! #REF! #REF! #REF!

Code Review Supervisor: Replace example languages and insert lines as needed. When the reports are compiled, link the
cells in the table below to the appropriate spreadsheet files.

File's Functions Line Count Consolidated Report for

On the Application level, no more than 50%
exceeding 60 lines, no more than 5%
exceeding 120 lines, and none exceeding 240

Company Name, Program Name

SLI Confidential Template Rev 05-02, 4/17/2008 Page 2 of 18

4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

VVSG Section VVSG v.1:
5.2.2

General Description Review
Date

Reviewer
Name

Program
Name

Program Version TDP Date File Path File name Class or
Function name

Self-
modifying
code

VVSG or Standard
Description

Self-
modifying,
dynamically
loaded, or
interpreted
code is
prohibited

Language or Vendor
Adjustments

Total Accept 0
Total Reject 0
Total N/A 0
Total Blank 5
Total 5

SLI Confidential Template Reve05-02, 4/17/2008 Page 3

4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

VVSG v.1:
5.2.3.a

VVSG v.1:
5.2.3.b

Hart Verity
Coding Std
sec.:
3 2

VVSG v.1:
5.2.3.b
5.2.7.a

VVSG v.1:
5.2.3.c

VVSG v.1:
5.2.3.e

VVSG v.1:
5.2.3.e

VVSG v.1:
5.2.3.f

VVSG v.1:
5.2.4.a

VVSG v.1:
5.2.4.I

VVSG v.1:
5.2.4.ii

Specific
function

Module has
unique
name

Hart
Naming
Convention
s

Module has header Required
resources

Single
Entry Point

Single Exit
Point

Control
structures

Acceptable
Constructs

Vendor
Defined
Constructs
with
Justificatio

Execution
through
Control
Constructs

Module
performs a
specific
function

Uniquely
and
mnemonical
ly named
using
names that
differ by
more than a
single
character

3.2.1 Use
PascalCasi
ng for
classes
enumeratio
ns, methods
, functions,
public
properties,
events,
resources,
and

Header describes
purpose, other units
needed, inputs,
outputs, files read or
written, globals,
revision records (for
modules greater than
10 lines)
Header comments
shall provide the
following information:
1) The purpose of the

All required
resources,
such as
data
accessed
by the
module,
should
either be
contained
within the
module or

Module has
a single
entry point

Module has
a single exit
point

Sequence,
Conditionals
, Top &
Bottom
tested
loops,
Switch..Cas
e, For loops

Acceptable
constructs
are
Sequence,
If-Then-
Else, Do-
While, Do-
Until, Case,
and the
General
loop
(including

If the
programmin
g language
used does
not provide
these
control
constructs,
the vendor
shall
provide
them (that

While some
programmin
g languages
do not
create
programs
as linear
processes,
stepping
from an
initial
condition,

Hart uses /// comments
for classes, properties,
and methods

N/A
N/A
N/A
N/A
N/A

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 5 0
5 5 5 5 5 5 5 5 5 0 5
5 5 5 5 5 5 5 5 5 5 5

SLI Confidential Template Reve05-02, 4/17/2008 Page 4

4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

VVSG v.1:
5.2.4.iii

MS Std sec.:
2.2

Verity Std
sec.:
2.1

MS Std sec.:
2.5

MS Std sec.:
2.5

Verity Std
sec.: 3.8.4

MS Std sec.:
2.6

MS Std sec.:
2.7

MS Std sec.:
2.8

MS Std sec.:
2.8.1

MS Std sec.:
2.10

Program re-
direction

Do not use tabs Line
length

Local
variables
have
minimum
scope

Local
variable
declaration
and
initialization

Initialize
pointer
variables

Parameters
ordered in
groups

One
statement
per line

Use enums Flag enums Braces and
indentation

Logic that
evaluates
received or
stored data
shall not re-
direct
program
control

All code should
be written using
four spaces for
indentation.

Maximum
line length
is 150
characters
for C#

Do declare
local
variables in
the minimum
scope block
that can
contain them,
typically just
before use if
the language
allows;
otherwise, at

Do initialize
variables
when they
are declared.
Do declare
and
initialize/assi
gn local
variables on
a single line
where the
language

Initialize
pointers
(when) they
are declared
(and) set
them to NULL
after freeing
them.

Do order
parameters,
grouping the
in parameters
first, the out
parameters
last.

Do not put
more than
one
statement on
a single line

Do use an
enum to
strongly type
parameters,
properties,
and return
values that
represent
sets of
values.
Do not use
an enum for

Do apply the
System.Flags
Attribute to
flag enums in
.NET. Do not
apply this
attribute to
simple
enums.
Do use
powers of two
for the flags

Do use
Allman
bracing style.
The style
puts the
brace
associated
with a control
statement on
the next line,
indented to
the same

Hart allows
150 chars
per line for
C# and

Hart claims
that variable
initialization
is automatic

Very similar
to MS Std
sec.: 4.9.4

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5

SLI Confidential Template Reve05-02, 4/17/2008 Page 5

4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

Verity Std
sec.: 3.7.3

MS Std sec.:
2.11.2

MS Std sec.:
2.11.6

MS Std sec.:
4.2

MS Std sec.:
4.4.1

MS Std sec.:
4.4.3

MS Std
sec.:
4.5

MS Std
sec.:
4.6

MS Std
sec.:
4.7

MS Std
sec.:
4.8

MS Std
sec.:
4.9.1

Braces
around
single line
conditionals

File has
header
comments

TODO
comments

File named
for single
contained
public type

Meaningful
names

No
Hungarian
notation

Constant
fields

String
operations

Array and
Collection
operations

Value types
implement
IEquatable
<T>

Class
instance
fields are
private and
exposed
th hUse braces

around single
line
conditionals

Do have a file
header
comment at
the start of
every human-
created code
file. The
header
comment
templates are
as follows:

Do not use
TODO
comments in
any released
samples

Do not have
more than
one public
type in a
source file,
unless they
differ only in
the number
of generic
parameters
or one is
nested in the

Do use
meaning
names for
various types,
functions,
variables,
constructs and
types.
Do not use
underscores,
hyphens, or any
other non-

Do not use
Hungarian
notation (i.e.,
do not
encode the
type of a
variable in its
name) in
.NET.

Do use
constant
fields for
constants
that will
never
change.
Do use
public static
(shared)
readonly
fields for

* Do use
overloads
that
explicitly
specify the
string
comparison
rules for
string
operations.
Typically,
this involves

* Do not use
read-only
array fields.
The field
itself is read-
only and
can’t be
changed,
but
elements in
the array
can be

* Do
implement
IEquatable<
T> on value
types.

Do not
provide
instance
fields that
are public or
protected.
Public and
protected
fields do not
version well
and are not
protected by

Hart allows
undescore
characters in
names.

Hart allows
protected
instance
fields

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5

SLI Confidential Template Reve05-02, 4/17/2008 Page 6

4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

MS Std
sec.:
4.9.2

MS Std
sec.:
4.9.3

MS Std
sec.:
4.9.4

MS Std
sec.:
4.9.4

MS Std sec.:
4.9.6

MS Std
sec.:
4.9.10

MS Std sec.:
4.11.1

MS Std
sec.:
4.11.2

MS Std
sec.:
4.12

MS Std
sec.:
4.12.1

MS Std sec.:
4.12.2

Set-only
properties
are not
allowed

Do not call
virtual
members
on an
object
i id it

Out
parameters
follow all of
the pass-by-
value and

f

Validate
arguments
to public,
protected,
or explicit

b

Member
overloading

Abstract
types'
constructor
s

Throw specific
exceptions. Do not
return error codes.

Catch
only
specific
errors

Do not
force
garbage
collection
s

Do not
use catch
blocks for
cleanup
code.

Basic
Dispose
Pattern

Do not
provide set-
only
properties.
If the
property
getter
cannot be
provided,
use a
method to
implement

Do not call
virtual
members
on an object
inside its
constructors
. Calling a
virtual
member
causes the
most-
derived

Do place all
out
parameters
after all of
the pass-by-
value and
ref
parameters
(excluding
parameter
arrays),
even if this

Do validate
arguments
passed to
public,
protected,
or explicitly
implemente
d members.
Throw
System.Arg
umentExcep
tion, or one

* Do use member
overloading
rather than
defining
members with
default
arguments.
Default
arguments are
not CLS-
compliant
* Do not

* Do not
define
public or
protected-
internal
constructors
in abstract
types.
* Do define
a protected
or an
internal

* Do report execution
failures by throwing
exceptions. Do not
return error codes.
* Do throw the most
specific (the most
derived) exception
that makes sense.
For example, throw
ArgumentNullExcepti
on and not its base
type

Do catch
only
specific
errors that
the code
knows
how to
handle.
You
should
catch a
more

Do not
force
garbage
collections
with
GC.Collect
.

Do use try-
finally
blocks for
cleanup
code and
try-catch
blocks for
error
recovery
code. Do
not use
catch

* Do
implement
the Basic
Dispose
Pattern on
types
containing
instances of
disposable
types.
* Do extend
the Basic

Very similar
to MS Std
sec.: 2.6

Hart allows
"using"
blocks as
alternate to

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5

SLI Confidential Template Reve05-02, 4/17/2008 Page 7

4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

MS Std sec.:
4.12.3

Hart Verity
Coding Std sec.:
2.2.2

Types
finalizable

Methods and
Functions must
be less than
240 lines

Disc. # Description Date
Opened

TDP Date Reviewer
Name

Date
Closed

TDP Date Reviewer
Name

* Do make a
type
finalizable, if
the type is
responsible for
releasing an
unmanaged
resource that
does not have
its own
finalizer. When
implementing

Hart's internal
Verity standard
has made this
optional at Feb.
2014 by stating:
Executable code
in methods and
functions should
be less than 240
lines.

N/A
N/A
N/A
N/A
N/A

0 0
0 0
0 5
5 0
5 5

Fixed DiscrepancyDiscrepancy

SLI Confidential Template Reve05-02, 4/17/2008 Page 8

4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

Notes

SLI Confidential Template Reve05-02, 4/17/2008 Page 9

4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

Client Name: Company Name
Report Date:
Program: Program Name
Version: XXX
Programming Language: C#

Total Modules Reviewed 0
Total Modules with Discrepancy 0

VSS Req. Criterion Definition
Accept Reject

VVSG v.1:
5.2.2

Self-modifying code Self-modifying, dynamically loaded, or
interpreted code is prohibited

0 0

Accept Reject
VVSG v.1:
5.2.3.a

Specific function Module performs a specific function 0 0

VVSG v.1:
5.2.3.b

Module has unique name Uniquely and mnemonically named using
names that differ by more than a single
character

0 0

Source Code Review Detail

Vol. 1 Section 4.2.2-Integrity

Vol. 1 Section 4.2.3- Modularity

SLI Confidential Template Rev 05-02, 4/17/2008 Page 10 of 18

4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

VVSG v.1:
5.2.3.b
5.2.7.a

Module has header Header describes purpose, other units
needed, inputs, outputs, files read or
written, globals, revision records (for
modules greater than 10 lines)
Header comments shall provide the
following information:
1) The purpose of the unit and how it
works;
2) Other units called and the calling
sequence;
3) A description of input parameters and
outputs;
4) File references by name and method of
access (read, write, modify , append,
etc.);
5) Global variables used; and
6) Date of creation and a revision record;

0 0

VVSG v.1:
5.2.3.c

Required resources All required resources, such as data
accessed by the module, should either be
contained within the module or explicitly
identified

0 0

VVSG v.1:
5.2.3.e

Single Entry Point Module has a single entry point 0 0

VVSG v.1:
5.2.3.e

Single Exit Point Module has a single exit point 0 0

VVSG v.1:
5.2.3.f

Control structures Sequence, Conditionals, Top & Bottom
tested loops, Switch..Case, For loops

0 0

Accept Reject
VVSG v.1:
5.2.4.a

Acceptable Constructs Acceptable constructs are Sequence, If-
Then-Else, Do-While, Do-Until, Case, and
the General loop (including the special
case for loop);

Note: This criteria will be "Accept" except
in the case where the vendor defines
code constructs.

0 0
Vol. 1 Section 4.2.4-Control Constructs

SLI Confidential Template Rev 05-02, 4/17/2008 Page 11 of 18

4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

VVSG v.1:
5.2.4.I

Vendor Defined Constructs with
Justification

If the programming language used does
not provide these control constructs, the
vendor shall provide them (that is,
comparable control structure logic). The
constructs shall be used consistently
throughout the code. No other constructs
shall be used to control program logic and
execution;

0 0

VVSG v.1:
5.2.4.ii

Execution through Control
Constructs

While some programming languages do
not create programs as linear processes,
stepping from an initial condition, through
changes, to a conclusion, the program
components nonetheless contain
procedures (such as “methods” in object-
oriented languages). Even in these
programming languages, the procedures
must execute through these control
constructs (or their equivalents, as
defined and provided by the vendor);

0 0

VVSG v.1:
5.2.4.iii

Program re-direction Logic that evaluates received or stored
data shall not re-direct program control

0 0

Accept Reject
MS Std sec.:
2.2

Do not use tabs All code should be written using four
spaces for indentation.

0 0

Verity Std
sec.:
2.1

Line length Maximum line length is 150 characters for
C#

0 0

Accept Reject
MS Std sec.:
2.5

Local variables have minimum
scope

Do declare local variables in the minimum
scope block that can contain them,
typically just before use if the language
allows; otherwise, at the top of that scope
block

0 0

Vol. 1 Section 4.2.5-Naming Conventions

Vol. 1 Section 4.2.6-Coding Conventions

SLI Confidential Template Rev 05-02, 4/17/2008 Page 12 of 18

4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

MS Std sec.:
2.5

Local variable declaration and
initialization

Do initialize variables when they are
declared.
Do declare and initialize/assign local
variables on a single line where the
language allows it.
Do not declare multiple variables in a
single line.

0 0

MS Std sec.:
2.6

Parameters ordered in groups Do order parameters, grouping the in
parameters first, the out parameters last.

0 0

#REF! #REF! #REF! #REF! #REF!
MS Std sec.:
2.7

One statement per line Do not put more than one statement on a
single line

0 0

MS Std sec.:
2.8

Use enums Do use an enum to strongly type
parameters, properties, and return values
that represent sets of values.
Do not use an enum for open sets.
Do not use Enum.IsDefined for enum
range checks in .NET.

0 0

MS Std sec.:
2.8.1

Flag enums Do apply the System.FlagsAttribute to flag
enums in .NET. Do not apply this attribute
to simple enums.
Do use powers of two for the flags enum
values.

0 0

MS Std sec.:
2.10

Braces and indentation Do use Allman bracing style.
The style puts the brace associated with a
control statement on the next line,
indented to the same level as the control
statement. Statements within the braces
are indented to the next level.

0 0

SLI Confidential Template Rev 05-02, 4/17/2008 Page 13 of 18

4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

MS Std sec.:
2.11.2

File has header comments Do have a file header comment at the
start of every human-created code file.
The header comment templates are as
follows:

/***
*************\
Module Name: <File Name>
Project: <Sample Name>
<Description of the file>

*************/

0 0

MS Std sec.:
2.11.6

TODO comments Do not use TODO comments in any
released samples

0 0

MS Std sec.:
4.2

File named for single contained
public type

Do not have more than one public type in
a source file, unless they differ only in the
number of generic parameters or one is
nested in the other. Multiple internal
types in one file are allowed.
Do name the source file with the name of
the public type it contains.

0 0

MS Std sec.:
4.4.1

Meaningful names Do use meaning names for various types,
functions, variables, constructs and types.
Do not use underscores, hyphens, or any
other non-alphanumeric characters.

0 0

MS Std sec.:
4.4.3

No Hungarian notation Do not use Hungarian notation (i.e., do
not encode the type of a variable in its
name) in .NET.

0 0

MS Std sec.:
4.5

Constant fields Do use constant fields for constants that
will never change.
Do use public static (shared) readonly
fields for predefined object instances.

0 0

SLI Confidential Template Rev 05-02, 4/17/2008 Page 14 of 18

4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

MS Std sec.:
4.6

String operations * Do use overloads that explicitly specify
the string comparison rules for string
operations. Typically, this involves calling
a method overload that has a parameter
of type StringComparison.
* Do use StringComparison.Ordinal or
StringComparison.OrdinalIgnoreCase for
comparisons as your safe default for
culture-agnostic string matching, and for
better performance.
* Do use string operations that are based
on StringComparison.CurrentCulture
when you display output to the user.
* Do use the non-linguistic
StringComparison.Ordinal or
StringComparison.OrdinalIgnoreCase
values instead of string operations based
on CultureInfo.InvariantCulture when the
comparison is linguistically irrelevant
(symbolic, for example).
* Do use an overload of the String.Equals
method to test whether two strings are
equal.
* Do not use an overload of the
String.Compare or CompareTo method
and test for a return value of zero to
determine whether two strings are equal.
* Do use the String.ToUpperInvariant
method instead of the
String.ToLowerInvariant method when
you normalize strings for comparison.

0 0

SLI Confidential Template Rev 05-02, 4/17/2008 Page 15 of 18

4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

MS Std sec.:
4.7

Array and Collection operations * Do not use read-only array fields. The
field itself is read-only and can’t be
changed, but elements in the array can be
changed.
* Do use Collection<T> or a subclass of
Collection<T> for properties or return
values representing read/write collections,
and use ReadOnlyCollection<T> or a
subclass of ReadOnlyCollection<T> for
properties or return values representing
read-only collections.
* Do not implement both IEnumerator<T>
and IEnumerable<T> on the same type.
* Do not return a null reference for Array
or Collection.

0 0

MS Std sec.:
4.8

Value types implement
IEquatable<T>

* Do implement IEquatable<T> on value
types.

0 0

MS Std sec.:
4.9.1

Class instance fields are private
and exposed through properties

Do not provide instance fields that are
public or protected. Public and protected
fields do not version well and are not
protected by code access security
demands. Instead of using publicly visible
fields, use private fields and expose them
through properties.

0 0

MS Std sec.:
4.9.2

Set-only properties are not
allowed

Do not provide set-only properties. If the
property getter cannot be provided, use a
method to implement the functionality
instead.

0 0

#REF! #REF! #REF! #REF! #REF!
MS Std sec.:
4.9.3

Do not call virtual members on
an object inside its constructors

Do not call virtual members on an object
inside its constructors. Calling a virtual
member causes the most-derived
override to be called regardless of
whether the constructor for the type that
defines the most-derived override has
been called.

0 0

SLI Confidential Template Rev 05-02, 4/17/2008 Page 16 of 18

4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

MS Std sec.:
4.9.4

Out parameters follow all of the
pass-by-value and ref
parameters

Do place all out parameters after all of the
pass-by-value and ref parameters
(excluding parameter arrays), even if this
results in an inconsistency in parameter
ordering between overloads.

0 0

MS Std sec.:
4.9.4

Validate arguments to public,
protected, or explicit members

Do validate arguments passed to public,
protected, or explicitly implemented
members. Throw
System.ArgumentException, or one of its
subclasses, if the validation fails: If a null
argument is passed and the member
does not support null arguments, throw
ArgumentNullException. If the value of an
argument is outside the allowable range
of values as defined by the invoked
method, throw
ArgumentOutOfRangeException.

0 0

Accept Reject
MS Std sec.:
4.9.6

Member overloading * Do use member overloading rather than
defining members with default arguments.
Default arguments are not CLS-compliant
* Do not arbitrarily vary parameter names
in overloads. If a parameter in one
overload represents the same input as a
parameter in another overload, the
parameters should have the same name.
Parameters with the same name should
appear in the same position in all
overloads.

0 0

MS Std sec.:
4.9.10

Abstract types' constructors * Do not define public or protected-
internal constructors in abstract types.
* Do define a protected or an internal
constructor on abstract classes

0 0

Vol. 1 Section 4.2.7 -Comments

SLI Confidential Template Rev 05-02, 4/17/2008 Page 17 of 18

4/3/2015 HRT_C#_MSAllInOneStandard_SCRF_Template_09Sept2013.xls

MS Std sec.:
4.11.1

Throw specific exceptions. Do
not return error codes.

* Do report execution failures by throwing
exceptions. Do not return error codes.
* Do throw the most specific (the most
derived) exception that makes sense. For
example, throw ArgumentNullException
and not its base type ArgumentException
if a null argument is passed.
* Do not throw exceptions from exception
filter blocks.
* Do not explicitly throw exceptions from
finally blocks. Implicitly thrown exceptions
resulting from calling methods that throw
are acceptable.

0 0

#REF! #REF! #REF! #REF! #REF!

Less than
60+N/A

60 to 120 120 to 240 More than
240

Total

#REF! #REF! #REF! #REF! #REF!
#REF! #REF! #REF! #REF! #REF!

#REF! #REF!#REF!

SLI Confidential Template Rev 05-02, 4/17/2008 Page 18 of 18

