

1736 Vista View Drive | Longmont, CO 80504 | tel: 303.776.7249 | fax: 303.776.7314 | info@emcintegrity.com

Test Report Number:	TRB41001, Rev. A		
Report Type:	Full Compliance Immunity		
Reference Standard:	Hart InterCivic EMI/EMC Test Plan		
Date of Report:	25 November 2014		
Product Name:	Verity Scan		
Model Number:	2005350 (Scan), 2005357 (Ballot Box)		
Serial Number:	S1400005009		
Manufacturer:	Hart InterCivic		
Representative:	Darrick Forester (SLI Global)		
Approved By:	Vincent w. But		

EMC Integrity, Inc. is an electromagnetic interference and compatibility test lab that is accredited by NVLAP (Lab Code 200737). EMCI's certificate and scope of accreditation are contained in the "Laboratory Accreditations" appendix of this report. EMC Integrity, Inc. is a Nemko partner lab (ELA-215), and the Nemko certificate and scope of accreditation are

contained in the "Laboratory Accreditations" appendix of this report.

The results contained within this report relate only to the product tested. In the event of a discrepancy between EMCI's master report and the report delivered to the client, the EMCI report shall take precedence. This report shall not be reproduced, except in full, without written approval from EMC Integrity, Inc. This report must not be used by the client to claim product certification, approval, or endorsement by EMC Integrity, NEMKO, NVLAP, NIST, or any agency of the federal government.

Prepared for:

SLI Global Solutions 216 16th Street, Suite 700 Denver, Colorado 80202 Phone: 720-975-9196 Fax: 303-575-6882

Customer Representative:

Darrick Forester Project Manager

Tested at:

EMC Integrity, Inc. 1736 Vista View Drive Longmont, Colorado 80504

Tested by:

Dean Wyant Test Technician

Report Prepared by:

Mary Burback Office Manager

Report Approved by:

Vincent Greb Laboratory Manager

Revision	Description of Revision	Date:	
Rev	Initial Release	18 November 2014	
Rev. A	Changes per client email of 22/21/2014	25 November 2014	

TABLE OF CONTENTS

	Section #
Test Summary	1.0
Scope	2.0
Test Environment	
Electrostatic Discharge, IEC 61000-4-2	4.0
Radiated RF Immunity, IEC 61000-4-3	5.0
Electrical Fast Transient/Burst, IEC 61000-4-4	6.0
Surge Immunity, IEC 61000-4-5	7.0
Conducted RF Immunity, IEC 61000-4-6	8.0
Power Frequency H-field Immunity, IEC 61000-4-8	9.0
Voltage Dips and Interrupts, IEC 61000-4-11	

LIST OF APPENDICES

Electrostatic Discharge Test Data APPENDIX A
Radiated RF Immunity Test Data APPENDIX B
Electrical Fast Transient/Burst Test Data APPENDIX C
Surge Immunity Test Data APPENDIX D
Conducted RF Immunity Test Data APPENDIX E
Power Frequency H-field Immunity Test DataAPPENDIX F
Voltage Dips and Interrupts Test DataAPPENDIX G
EMI/EMC Test PlanAPPENDIX H
EMI Test Log APPENDIX I
Laboratory AccreditationsAPPENDIX J

1.0 TEST SUMMARY

1.1 Product Description

The unit under test (UUT) was the Verity Scan. This product consisted of two components and the model numbers of these components are as follows: 2005350 (Scan), 2005357 (Ballot Box). The serial number of the scan unit was S1400005009. It is manufactured by Hart InterCivic located in Austin, Texas. This product is a ballot scanner designed for use in commercial and business environments.. The product was continually exercised during testing, as documented in the "configuration" field of the test data sheet.

Additional product information may be found in Appendix H of this report.

1.2 Immunity Test Standards Used

This product was tested in accordance with the Hart InterCivic EMI/EMC Test Plan. This document referenced the immunity test levels defined by the Voting System Guidelines, and the basic test methods outlined in Table 1-1. A copy of this document may be found in Appendix H of this report.

Specification	Test Method	Performance Criteria
Electrostatic Discharge	IEC 61000-4-2, Ed. 2.0 (2008-12)	(B) Self-Recovering
Radiated RF Immunity	IEC 61000-4-3, Ed. 3.0 (2006-02) + A1 (2007-11) + A2 (2010-03)	(A) No Degradation
Electrical Fast Transient/Burst	IEC 61000-4-4, Ed. 2.0 (2004-07)	(B) Self-Recovering
Surge Immunity	IEC 61000-4-5, Ed. 2.0 (2005-11)	(B) Self-Recovering
Conducted RF Immunity	IEC 61000-4-6, Ed. 3.0 (2008-10)	(A) No Degradation
Power Frequency H-field Immunity	IEC 61000-4-8, Ed. 2.0 (2009-09)	(A) No Degradation
Voltage Dips, Interrupts	IEC 61000 4 11 E4 2.0	(B) Self-Recovering
	IEC 61000-4-11, Ed. 2.0 (2004-03)	(C) User-intervention Allowed

<u>Table 1-1</u>

1.3 Test Results

The UUT **complied** with all the immunity requirements defined by the Hart InterCivic EMI/EMC Test Plan. Test results are summarized in Table 1-2.

<u>Table 1-2</u>

Specification	Test Method	Test Conditions	Compliance
Electrostatic Discharge	IEC 61000-4-2	\pm 8 kV Contact / HCP, VCP / \pm 15 kV Air	Compliant
Radiated RF Immunity	IEC 61000-4-3	80 - 1000 MHz, 10 V/m, 80% 1 kHz AM	Compliant
EFT/Burst	IEC 61000-4-4	<u>+</u> 1.0 kV I/O, <u>+</u> 2.0 kV AC mains	Compliant
Surge Immunity	IEC 61000-4-5	AC Mains: 1.2/50 us @ <u>+</u> 2 kV common mode, <u>+</u> 1 kV differential mode	Compliant
Conducted RF Immunity	IEC 61000-4-6	150 kHz to 80 MHz, 10 Vrms, 80% 1 kHz AM, AC input and I/O	Compliant
Power Frequency H- field Immunity	IEC 61000-4-8	30 A/m, 50/60 Hz, 3 axes	Compliant
Voltage Dips and Interrupts	IEC 61000-4-11	>95% reduction for 0.5 cycles, 30% reduction for 25 cycles, >95% reduction for 250 cycles Nominal increase of 7.5%; nominal decrease of 12.5% 15% line variations	Compliant

1.4 Modifications Required for Compliance

The modifications outlined in Table 1-3 were required for compliance with the electrostatic discharge test. Further documentation regarding these changes may be found in the EMI Test Log in Appendix I of this report.

Test	Description of Modification			
Electrostatic Discharge	Client swapped power bricks with same model # AHM85PS24, SN: K12460009			
	Wrap 3-sides of power brick with lexan label – material is correct, color of label is being worked on			
	Install new back plate with clear lexan label			
	Tied the Thermal Printer's frame ground to the chassis ground on the baseboard. This is a rework on the baseboard in the Verity Scan system			
	This new configuration encapsulates the LED and protects the LED from ESD discharges. Hart			
	using the same red/green bi-color LED we used on the old LED cable.			
	Lens installs into bezel			
	• SPC-060's installed onto back-side of lens			
	LED plugs into CNX-D Socket			
	• CNX-D plugs onto the back of the Lens			

Table 1-3

2.0 SCOPE

2.1 Purpose

This report documents the test efforts performed on the Verity Scan to verify compliance to the 2010 version of the Hart InterCivic EMI/EMC Test Plan. This was a formal acceptance test and was conducted on selected days over the period from 6 through 24 October 2014.

2.2 Test Plan

Testing was performed in accordance with the Hart InterCivic EMI/EMC Test Plan. This document defines the critical operational parameters for testing, as well as providing general product information. This is contained in Appendix H of this report.

2.3 Test Parameters

For RF immunity testing, the UUT was placed in a completely anechoic lined chamber (CALC). Support equipment was placed outside the CALC and I/O to the UUT was connected through a penetration panel.

Critical parameters of this product, which were monitored during testing, were defined by the client in their EMI/EMC Test Plan, contained in Appendix H of this report.

2.4 Definition of Performance Criterion for the UUT

The performance criteria for this product are defined in the Hart InterCivic EMI/EMC Test Plan, contained in Appendix H of this report.

3.0 TEST ENVIRONMENT

3.1 Immunity Test Site

The immunity testing was performed at EMCI's test facility in Longmont, Colorado. The radiated field immunity testing was performed in a ferrite lined, shielded enclosure. The enclosure is 10' high x 12' wide x 20' long in size and meets the field uniformity requirements of IEC 61000-4-3. The size of the chamber allows 2-meter separation between the antenna and the UUT.

All other immunity testing was performed on a ground plane measuring approximately 3.0 meters by 4.5 meters (13.5 m^2) and made of 0.125" thick aluminum. The ground plane extended beyond the UUT by 0.5 meters on all sides, was bonded to the facility ground and configured in accordance with the applicable standards.

3.2 Measurement Uncertainty

The measurement uncertainty for EMC Integrity's emissions test facility complies with the requirements defined in CISPR 16. The complete calculations of EMC Integrity's measurement uncertainty is contained in an EMCI memo, which is available upon request. However, a summary of EMCI's measurement uncertainty is given in Table 3-1.

Test	Measurement	Reference
	Uncertainty	
Electrostatic	Contact Voltage: 1.9%	Accredited Calibration Data Sheet
Discharge	Risetime: 60 ps	
	Peak Current: 2.8%	
	30 ns Current: 3.8%	
	60 ns Current: 9%	
	Indicated Voltage: 1.9%	
Radiated RF	V-pole: 1.2 dB	Worksheets located at
Immunity	H-pole: 0.7 dB	H:\EMCI\Administration\Calibration\Measuremen
Electrical Fast	Voltage: 0.01 kV	t Uncertainty
Transient	Risetime: 0.45 nsec	
	Pulse Width: 1.08 nsec	
Surge Immunity	O.C. Voltage: 0.01 kV	
	Risetime: 0.1 usec	
	Pulse Width: 1.76 usec	
	S. C. Current: 0.91 A	
	Risetime: 0.08 usec	
	Pulse Width: 0.15 usec	
Conducted RF	0.24 dB	
Immunity		
Power Frequency	0.87 dB	
H-field Immunity		
Voltage Dips &	Voltage: 10.38 Volts	
Interruptions	Duration: 0.23 msec	

Table 3-1

4.0 IEC 61000-4-2, Electrostatic Discharge

4.1 Summary of Test Results

Electrostatic discharge (ESD) testing was performed on the UUT in accordance with the test methods specified by IEC 61000-4-2. Contact discharge was performed at levels of $\pm 2 \text{ kV}$, $\pm 4 \text{ kV}$ and $\pm 8 \text{ kV}$ at applicable (conductive) test points. Air discharge was performed for non-conductive surfaces of the product at levels of $\pm 2 \text{ kV}$, $\pm 4 \text{ kV}$, $\pm 8 \text{ kV}$ and $\pm 15 \text{ kV}$. Indirect discharge to the horizontal coupling plane (HCP) and the vertical coupling plane (VCP) were also performed to levels of $\pm 2 \text{ kV}$, $\pm 4 \text{ kV}$.

Note: In the event that no discharge occurs when ESD testing is performed on a product, the data sheet will state "no [contact or air] discharge points found".

The UUT complied with the requirements of this test.

4.2 Test Setup

The UUT was set up per IEC 61000-4-2 and tested to the levels specified in the Hart InterCivic EMI/EMC Test Plan.

4.3 Special Configurations

N/A

4.4 **Performance Criteria**

Performance criterion Level B is defined as degradation in performance provided 1) the UUT self-recovers without user-intervention and 2) no data is lost.

4.5 Deviations from Test Procedures

N/a

4.6 Test Data

See APPENDIX A for data sheets, discharge points and test setup pictures.

4.7 Temperature and Humidity

Temperature, relative humidity and barometric pressure are located in the header table for the IEC 61000-4-2 test data sheet.

5.0 IEC 61000-4-3, Radiated RF Immunity

5.1 Summary of Test Results

Radiated RF immunity testing was performed on the UUT in accordance with the test methods specified by IEC 61000-4-3. The UUT was placed on a non-conductive table, 80 cm above the ferrite floor of the completely anechoic-lined chamber. The frequency range for this testing was 80 - 1000 MHz. The UUT was placed 2 meters from the radiating antenna; which was 1.5 meters above the floor of the chamber. Testing was performed in both horizontal and vertical antenna polarizations. The frequency was incremented in 1% steps, with a 3 second dwell time for each test frequency. The UUT was rotated on the table so that all four sides were illuminated in the 10 V/m field. The field was amplitude modulated with a 1 kHz sine wave to a depth of 80%. Performance of the unit was monitored remotely with the support PC, located outside the CALC.

The UUT complied with the requirements of this test.

5.2 Test Setup

The UUT was set up per IEC 61000-4-3 and tested to the levels specified in the Hart InterCivic EMI/EMC Test Plan.

5.3 Special Configurations

N/A

5.4 Performance Criteria

Performance criterion Level A is defined as no degradation in performance beyond manufacturer's specified tolerances.

5.5 Deviations from Test Procedures

N/a

5.6 Test Data

See APPENDIX B for data sheets and test setup pictures.

5.7 Temperature and Humidity

Temperature, relative humidity and barometric pressure are located in the header table for the IEC 61000-4-3 test data sheet.

6.0 IEC 61000-4-4, Electrical Fast Transient/Burst

6.1 Summary of Test Results

Electrical fast transient/burst immunity testing was performed on the UUT in accordance with the test methods specified by IEC 61000-4-4. The UUT AC power was tested via direct injection at a level of \pm 2 kV. External I/O in excess of 3 meters was tested via capacitive coupling clamp to a level of \pm 1.0 kV.

The UUT complied with the requirements of this test.

6.2 Test Setup

The UUT was set up per IEC 61000-4-4 and tested to the levels per the Hart InterCivic EMI/EMC Test Plan.

6.3 Special Configurations

N/A

6.4 **Performance Criteria**

Performance criterion Level B is defined as degradation in performance provided 1) the UUT self-recovers without user-intervention and 2) no data is lost.

6.5 Deviations from Test Procedures

N/a.

6.6 Test Data

See APPENDIX C for data sheet and test setup pictures.

6.7 Temperature and Humidity

Temperature, relative humidity and barometric pressure are located in the header table for the IEC 61000-4-4 test data sheet.

7.0 IEC 61000-4-5, Surge Immunity

7.1 Summary of Test Results

Surge immunity testing was performed on the UUT in accordance with the test methods specified by IEC 61000-4-5. The UUT AC power was tested via direct injection at levels of ± 0.5 kV and ± 1.0 kV for differential mode and at levels of ± 0.5 kV, ± 1.0 kV and ± 2.0 kV for common mode. Surges were injected at 0 degrees, 90 degrees, 180 degrees and 270 degrees of the input AC waveform at a rate of one pulse per minute. Five pulses were injected for each test configuration.

The UUT complied with the requirements of this test.

7.2 Test Setup

The UUT was set up per IEC 61000-4-5 and tested to the levels specified in the Hart InterCivic EMI/EMC Test Plan.

7.3 Special Configurations

N/A

7.4 **Performance Criteria**

Performance criterion Level B is defined as degradation in performance provided 1) the UUT self-recovers without user-intervention and 2) no data is lost.

7.5 Deviations from Test Procedures

N/A

7.6 Test Data

See APPENDIX D for data sheets and test setup pictures.

7.7 Temperature and Humidity

Temperature, relative humidity and barometric pressure are located in the header table for the IEC 61000-4-5 test data sheet.

8.0 IEC 61000-4-6, Conducted RF Immunity

8.1 Summary of Test Results

Conducted RF immunity testing was performed on the UUT in accordance with the test methods specified by IEC 61000-4-6. The UUT was subjected to injected RF signals on its input AC power cable. Injection on the AC leads was performed via a coupling/decoupling network (CDN). Injection on the I/O of the product was performed with an EM clamp. The frequency range for this testing was 150 kHz to 80 MHz. The test frequency was stepped in 1% increments with a three second dwell time for each injection frequency. The injection level used for all testing was 10 Vrms with 1 kHz AM to a depth of 80%.

The UUT complied with the requirements of this test.

8.2 Test Setup

The UUT was set up per IEC 61000-4-6 and tested to the levels specified in the Hart InterCivic EMI/EMC Test Plan.

8.3 Special Configurations

N/A

8.4 **Performance Criteria**

Performance criterion Level A is defined as no degradation in performance beyond manufacturer's specified tolerances.

8.5 Deviations from Test Procedures

N/A

8.6 Test Data

See APPENDIX E for data sheets and test setup pictures.

8.7 Temperature and Humidity

Temperature, relative humidity and barometric pressure are located in the header table for the IEC 61000-4-6 test data sheet.

9.0 IEC 61000-4-8, Power Frequency H-field Immunity

9.1 Summary of Test Results

Power frequency H-field immunity testing was performed on the UUT in accordance with the test methods specified by IEC 61000-4-8. The UUT was exposed to a 30 A/m field at both 50 and 60 Hz. All three axes (x, y, and z) were immersed in the field for a period of 60 seconds for each configuration. A 1.5 meter by 2.0 meter coil was used for this test and the immersion method was used.

The UUT complied with the requirements of this test.

9.2 Test Setup

The UUT was set up per IEC 61000-4-8 and tested to the levels specified in the Hart InterCivic EMI/EMC Test Plan.

9.3 Special Configurations

N/A

9.4 Performance Criteria

Performance criterion Level A is defined as no degradation in performance beyond manufacturer's specified tolerances.

9.5 Deviations from Test Procedures

N/A

9.6 Test Data

See APPENDIX F for data sheets and test setup pictures.

9.7 Temperature and Humidity

Temperature, relative humidity and barometric pressure are located in the header table for the IEC 61000-4-8 test data sheet.

10.0 IEC 61000-4-11, Voltage Dips and Interrupts

10.1 Summary of Test Results

Voltage dip and interrupt testing was performed on the UUT in accordance with IEC 61000-4-11. The UUT was subjected to the following voltage fluctuations on its AC power input:

>95% reduction for 5 secondsvariation30% reduction for 0.5 secondsdip>95% reduction for 0.01 secondsdip7.5% increase & 12.5% decrease15% surges from nominal line

The UUT complied with the requirements of this test.

10.2 Test Setup

The UUT was set up per IEC 61000-4-11 and tested to the levels specified in the Hart InterCivic EMI/EMC Test Plan.

10.3 Special Configurations

N/A

10.4 Performance Criteria

The performance criteria for this test are Levels B and C. Level B is defined as allowing degraded performance provided that the UUT self-recovers without user intervention and no data is lost. Level C is defined as allowing user intervention to regain functionality of the product provided that no permanent damage occurs.

10.5 Deviations from Test Procedures

N/A

10.6 Test Data

See APPENDIX G for data sheets and test setup pictures.

10.7 Temperature and Humidity

Temperature, relative humidity and barometric pressure are located in the header table for the IEC 61000-4-11 test data sheet.

APPENDIX A

Electrostatic Discharge Test Data

emc integrity incorporated

	Manufacturer	: SI	LI Glo	bal Solutions	3	Project Number:	B41001		
Customer F	Representative	: D	arrick	Forester		Test Area:	GP1		
	Model) (Scan) Rev.	. В	S/N:	S140000500)9	
Standa	rd Referenced			00-4-2		Date:	November 4		
	Temperature).3°C		Humidity:				
	Input Voltage		20Vac/						
	ration of Unit	_			Plaving Audi	o, Writing to V Drive, Printing to thermal P	Printer		
	Test Engineer		ean W	<u>v</u>		-, -, -,,,,,,,, -,			
B41001-4-2.doc				J				FR0100	
Test	Voltage	Pola	arity	Number	Pulses	Comments	Criteria	Pass /	
Location	Level	+	-	of Pulses	Per		Met	Fail	
	(kV)	•			Second				
			Indire	ct Discharge	Points (Pow	ver brick and UUT w/ballot box)			
VCP	2, 4, 8	Х	х	10	1	Front Side	А	Pass	
VCP	2, 4, 8	Х	Х	10	1	Left Side	А	Pass	
VCP	2, 4, 8	х	х	10	1	Right Side	А	Pass	
VCP	2, 4, 8	Х	х	10	1	Back Side	А	Pass	
HCP	2, 4, 8	Х	Х	10	1	Edge of HCP at Front of UUT	А	Pass	
						(Power Brick Only)			
				Contact	Discharge I	Points - RED Arrows.			
Figure A2	2, 4, 8	Х	Х			No contact charges found	Α	Pass	
Figure A3	2, 4, 8	Х	х			No contact charges found	Α	Pass	
Figure A4	2, 4, 8	Х	х			No contact charges found	Α	Pass	
Figure A5	2, 4, 8	Х	х			No contact charges found	А	Pass	
Figure A6	2, 4, 8	Х	х			No contact charges found	А	Pass	
Figure A7	2, 4, 8	Х	х			No contact charges found	А	Pass	
Figure A8	2, 4, 8	Х	х			No contact charges found	А	Pass	
Figure A9	2, 4, 8	Х	х			No contact charges found	А	Pass	
			r	Air Di	scharge Poin	nts - BLUE Arrows.	1		
Figure A2	2, 4, 8, 15	Х	х						
Figure A3	2, 4, 8, 15	Х	х						
Figure A4	2, 4, 8, 15	Х	Х	10	1		А	Pass	
Figure A5	2, 4, 8, 15	Х	х						
Figure A6	2, 4, 8, 15	Х	х						
Figure A7	2, 4, 8, 15	Х	Х	10	1		А	Pass	
Figure A8	2, 4, 8, 15	Х	Х						
Figure A9	2, 4, 8, 15	Х	Х	10	1		Α	Pass	

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP1
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-2	Date:	November 4, 2014
B41001-4-2.doc			FR0100

Figure A1. Electrostatic Discharge Test Setup.

Electrostatic Discharge per IEC 61000-4-2

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP1
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-2	Date:	November 4, 2014
B41001-4-2.doc			FR0100

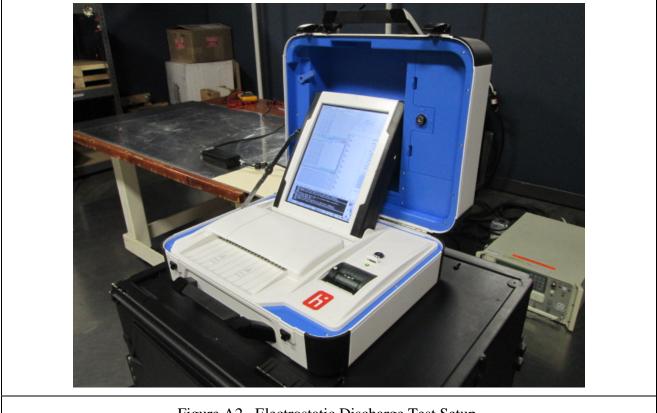
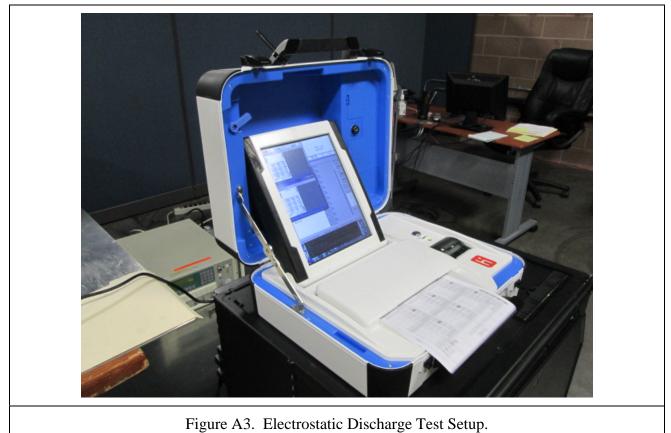
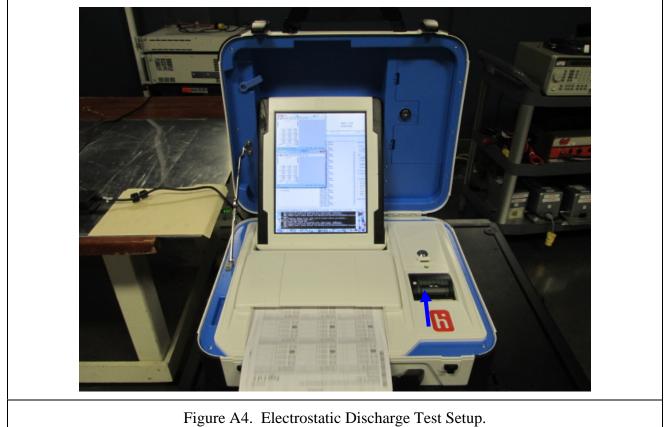



Figure A2. Electrostatic Discharge Test Setup.



Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP1
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-2	Date:	November 4, 2014
B41001-4-2.doc		-	FR0100



Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP1
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-2	Date:	November 4, 2014
B41001-4-2.doc		-	FR0100

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP1
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-2	Date:	November 4, 2014
B41001-4-2 doc		-	FR0100

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP1
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-2	Date:	November 4, 2014
B41001-4-2.doc			FR0100

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP1
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-2	Date:	November 4, 2014
B41001-4-2.doc			FR0100
		h	
	Figure A7. Electrostatic Discharg	ge Test Setup.	

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP1
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-2	Date:	November 4, 2014
B41001-4-2.doc		-	FR0100

Electrostatic Discharge per IEC 61000-4-2

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP1
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-2	Date:	November 4, 2014
B41001-4-2.doc		-	FR0100

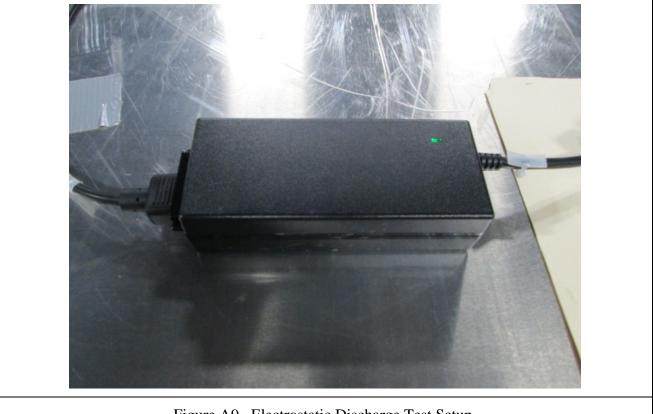


Figure A9. Electrostatic Discharge Test Setup.

emc integrity incorporated

Electrostatic Discharge per IEC 61000-4-2

Manufacturer:	SLI Global Solutions Project Number:		B41001
Customer Representative:	arrick Forester Test Area:		GP1
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-2	Date:	November 4, 2014
B41001-4-2.doc		-	FR0100

Test Equipment List

ID	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
Number						
1249	KeyTek	MZ-15/EC	0609258	ESD Gun with TPC-2A SN:0609259	05/19/2014	05/19/2015
1281	EMC Partner	ESD3000	284	ESD Test System	09/24/2014	09/24/2015
1552	EXTECH	445715		Hygro-Thermometer	09/29/2014	09/29/2015
	Instruments					

APPENDIX B

Radiated RF Immunity Test Data

emc integrity incorporated

	Manufa	acturer	: SLIG	lobal Solu	itions				Project Number:	B41001	
Customer	ner Representative: Darrick Forester Test Area: CALC		Darrick Forester Test Area:								
	-	Model		50 (Scan)	Rev. B				S/N:	S1400005009)
Stand	lard Refe	renced	IEC 6	1000-4-3					Date:	October 6, 20)14
	Tempe	erature	: 20.8°C	2	Hun	nidity: 3	36%		Pressure:	839 mb	
	Input V	oltage	: 120V	ac/60Hz	_						
Config	guration of	of Unit	Proce	ssing Ball	ots, Playi	ing Audio	, Writing to	V Drive, I	Printing to thermal P	rinter	
· · · ·	Test En		-	Lockhart	, ,		<u> </u>	,	0		
B41001-4-3.do	c	-									FR0100
Frequency		Moo	lulation		Step	Field	Polarity	Dwell	Comments	Criteria	Pass /
(MHz)	Туре	%	Freq	Form	Size	(V/m)	(V or H)	(sec)		Met	Fail
	••		-		(%)						
80 - 1000	AM	80	1kHz	Sine	1		V	3	Front	А	Pass
80 - 1000	AM	80	1kHz	Sine	1		Η	3		А	Pass
80 - 1000	AM	80	1kHz	Sine	1		V	3	Right	А	Pas
80 - 1000	AM	80	1kHz	Sine	1		Н	3		А	Pass
80 - 1000	AM	80	1kHz	Sine	1		V	3	Back	А	Pass
80 - 1000	AM	80	1kHz	Sine	1		Н	3		А	Pass
80 - 1000	AM	80	1kHz	Sine	1		V	3	Left	А	Pass
80 - 1000	AM	80	1kHz	Sine	1		Н	3		А	Pass

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	CALC
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-3	Date:	October 6, 2014
B41001-4-3.doc			FR0100

Figure B1. Radiated RF Immunity Test Setup – Front Side.

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	CALC	
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-3	Date:	October 6, 2014
B41001-4-3.doc		-	FR0100

Figure B2. Radiated RF Immunity Test Setup – Right Side.

Manufacturer:	SLI Global Solutions Project		B41001
Customer Representative:	Darrick Forester Test Area:		CALC
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-3	Date:	October 6, 2014
B41001-4-3.doc		-	FR0100

Figure B3. Radiated RF Immunity Test Setup – Back Side.

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	CALC
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-3	Date:	October 6, 2014
B41001-4-3.doc		-	FR0100

Figure B4. Radiated RF Immunity Test Setup – Left Side.

Radiated RF Immunity per IEC 61000-4-3

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	CALC
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-3	Date:	October 6, 2014
B41001-4-3.doc			FR0100

ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1005	EMCO	3140	1012	Biconilog Antenna	NA	NA
1058	Ray Proof	RF Shield Room	6698	Completely Anechoic Lined Chamber	07/13/2014	07/13/2015
1139	Wiltron	68369B	675016	Synthesized Signal Generator, 10 MHz - 40 GHz	07/30/2014	07/30/2015
1181	EMCI	RFS	NA	Initial Release 02 July 2004	NA	NA
1455	Giga-tronics	GT-8888A	8888A03337	10 MHz to 8 GHz, +20 dBm, 25 Vdc Power Meter	05/13/2014	05/13/2015
1456	Werlatone	C3908-10	98095	1500 Watts, 50 dB Dual Directional Coupler 80 MHz	05/29/2014	05/29/2015
1478	Ophir	5127F	1100	RF Amplifier, 200 Watt, 20 - 1000 MHz	NA	NA
1537	Extech Instuments	445715	Z315813	Hygro-Thermometer	03/21/2014	03/21/2015

Test Equipment List

APPENDIX C

Electrical Fast Transients/Burst Test Data

emc integrity incorporated

Electrical Fast Transient/Burst per IEC 61000-4-4

	М	anufac	cturer: S	SLI Global So	ons				Proje	ct Number:	B41001			
Custom	er Rep	present	tative: I	Darrick Forester							Test Area:	GP2		
		Ν	Iodel: 2	2005350 (Scan) Rev. B							S/N:	S1400005009		
Sta	ndard	Refere	enced: I	IEC 61000-4-4							Date:	October 6, 2014		
	Т	'emper	ature: 2	22.7°C Humidity: 35%					:	35%	Pressure:	839 mb		
	In	put Vo	ltage:	120Vac/60Hz										
Con	figura	tion of	Unit: I	Processing Ba	llots	, Pla	ayin	g A	udio	, Writing to V Drive, Printing	to thermal P	rinter		
	Te	st Eng	ineer: I	Dean Wyant										
B41001-4-4.	doc												FR0100	
Voltage Polarity Time		Time	Injection	L	L	L	Ν	Р	Comments		Criteria	Pass /		
(kV)	+	-	(sec)	Туре	1	2	3		Е			Met	Fail	
2.0	Х		60	CDN	х					AC		2.0	Pass	
2.0		х	60	CDN	х							2.0	Pass	
2.0	х		60	CDN		х						2.0	Pass	
2.0		х	60	CDN		х						2.0	Pass	
2.0	Х		60	CDN					х			2.0	Pass	
2.0		х	60	CDN					х			2.0	Pass	
2.0	х		60	CDN	х	х			х			2.0	Pass	
2.0		х	60	CDN	х	х			х			2.0	Pass	

Electrical Fast Transient/Burst per IEC 61000-4-4

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP2
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-4	Date:	October 6, 2014
B41001-4-4.doc		-	FR0100

Figure C1. Electrical Fast Transient Test Setup

Electrical Fast Transient/Burst per IEC 61000-4-4

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP2
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-4	Date:	October 6, 2014
B41001-4-4.doc		-	FR0100

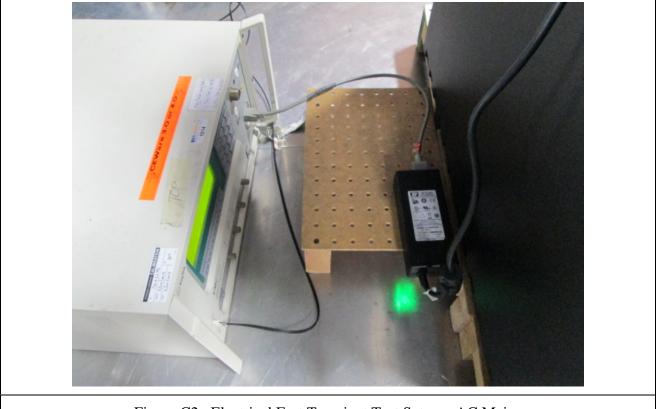


Figure C2. Electrical Fast Transient Test Setup – AC Mains

emc integrity incorporated

Electrical Fast Transient/Burst per IEC 61000-4-4

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP2
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-4	Date:	October 6, 2014
B41001-4-4.doc			FR0100

Test Equipment List

ID	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
Number						
1014	KeyTek	EMC Pro	0203270	Advanced EMC Immunity Tester	05/22/2014	05/22/2015
1184	KeyTek	CEWare32	NA	NA KeyTek EMCPro Control Software for EFT, Surge, H-F		NA
1372	Tektronix	TDS2002B	C103489	Oscilloscope, 60 MHz, 2-channel	01/05/2014	01/05/2015
1548	California Instruments/A metek	1251P	1423A06347	AC Power supply	NA	NA
1553	EXTECH Instruments	445715		Hygro-Thermometer	08/29/2014	08/29/2015

APPENDIX D

Surge Immunity Test Data

emc integrity incorporated

Surge Immunity per IEC 61000-4-5

	М	lanufa	cture	er:	SI	JG	loba	al Solution	5		Project Number:	B41001		
Custon	ner Re	presen	tativ	e:	Da	arric	k F	orester			Test Area:	GP2		
			Aode					Scan) Rev	. B		S/N:	S140000500)9	
Sta	undard	Refer	ence	d:				0-4-5			Date:	October 9, 2014		
	Т	Tempe	ratui	re:		.8°C			Humidity:	39%	Pressure:	839 mb		
		put V			12	20Va	ac/6	0Hz	<u> </u>					
Cor	nfigura								Playing Audio	o, Writing	to V Drive, Printing to thermal P	rinter		
B41001-4-5		est Eng	ginee	er:	Μ	ark	Nov	vak					FR0100	
Voltage (kV)		arity	L 1	L 2	L 3	N	P E	Phase (deg)	Number of Pulses	Delay (sec)	Comments	Criteria Met	Pass / Fail	
0.5	+ X	-	X	4	3	х	Ľ	(ueg)	5	30	Differential Mode	A	Pass	
0.5	Χ	v	X			X		0	5	30	Differential Mode	A	Pass	
0.5	v	х	-			X		90	5	30		A	Pass	
0.5	Х	v	X					90	5	30		A	Pass	
0.5	v	X	X X		\vdash	X X		180	5	30		A	Pass	
0.5	X	v	X X			X		180	5	30		A	Pass	
0.5	v	X	X			X		270	5	30		A	Pass	
0.5	X	x	X X			X X		270	5	30		A	rass	
0.5		X	х			λ		270	5	30		-		
0.5	х		х				Х	0	5	30	Common Mode Line	А	Pass	
0.5		х	Х				Х	0	5	30		Α	Pass	
0.5	х		х				Х	90	5	30		А	Pass	
0.5		Х	х				Х	90	5	30		Α	Pass	
0.5	Х		х				Х	180	5	30		Α	Pass	
0.5		Х	Х				Х	180	5	30		А	Pass	
0.5	Х		Х				Х	270	5	30		А	Pass	
0.5		X	х				X	270	5	30		A	Pass	
0.5	x					х	х	0	5	30	Common Mode Neutral	A	Pass	
0.5	A	х				x	X	0	5	30		A	Pass	
0.5	х					x	x	90	5	30		A	Pass	
0.5		х				x	x	90	5	30		A	Pass	
0.5	х					x	x	180	5	30		A	Pass	
0.5		х				X	X	180	5	30		A	Pass	
0.5	х					x	X	270	5	30		A	Pass	
0.5		х				x	X	270	5	30		A	Pass	
						-	-							
1.0	х		х			х		0	5	60	Differential Mode	А	Pass	
1.0	1	х	X			x		0	5	60		A	Pass	
1.0	х		X			x		90	5	60		A	Pass	
1.0		х	x			x		90	5	60		A	Pass	
1.0	х		x			x		180	5	60		A	Pass	
1.0		х	X			x		180	5	60		A	Pass	
1.0	х		X			x		270	5	60		A	Pass	
1.0		х	x			x		270	5	60		1		
1.0	х		х				Х	0	5	45	Common Mode Line	А	Pass	
1.0	1	х	х				х	0	5	45		А	Pass	

Surge Immunity per IEC 61000-4-5

	Μ	lanufa	cture	er:	SI	JG	loba	al Solutions	5		Project Number:	B41001	
Custon	ner Rej	presen	tativ	e:	Da	arric	k F	orester			Test Area:	GP2	
		Ν	Aod	el:	20	053	50 ((Scan) Rev	. B		S/N:	S140000500	
Sta	ndard	Refer	ence	ed:	IE	C 6	100	0-4-5			Date:	October 9, 2	2014
		empe				.8°C			Humidity:	39%	Pressure:	839 mb	
-		put Vo			_			0Hz					
Cor	nfigura								Playing Audi	o, Writing	g to V Drive, Printing to thermal F	rinter	
D 41001 4 5		est Eng	gine	er:	M	ark	Νοι	/ak					EB 0100
B41001-4-5								_		_	-		FR0100
Voltage		arity	L	L	L	Ν	P	Phase	Number	Delay	Comments	Criteria	Pass /
(kV)	+	-	1	2	3		E	(deg)	of Pulses	(sec)		Met	Fail
1.0	Х		X				X	90 90	5 5	45 45		A	Pass Pass
1.0		X	X				X	180	5	45		A	
1.0 1.0	Х	v	X X				X	180	5	45		A	Pass Pass
		X					X	270	5	45			
1.0	Х	v	X		-		X X	270	5	45		A	Pass Pass
1.0		х	Х				X	270	3	43		A	rass
1.0	v		-		-	v	х	0	5	45	Common Mode Neutral	А	Pass
1.0	X	x	-		-	X X	X	0	5	45		A	Pass
1.0	х	л				х	Х	90	5	45		A	Pass
1.0	Λ	x				X	X	90	5	45		A	Pass
1.0	х	л				X X	Х	180	5	45		A	Pass
1.0	Λ	x				X	X	180	5	45		A	Pass
1.0	х	л				X	Х	270	5	45		A	Pass
1.0	Λ	x				X	X	270	5	45		A	Pass
1.0		л				л	л	270	5	43		Α	1 455
2.0	х		х				х	0	5	60	Common Mode Line	А	Pass
2.0	л	x	X				х	0	5	60		A	Pass
2.0	х	А	X				X	90	5	60		A	Pass
2.0	Λ	х	X				X	90	5	60		A	Pass
2.0	х	A	X				x	180	5	60		A	Pass
2.0	A	х	X				X	180	5	60		A	Pass
2.0	х		x				x	270	5	60		A	Pass
2.0	A	х	X				X	270	5	60		A	Pass
2.0								2/0					1 400
2.0	х					х	х	0	5	60	Common Mode Neutral	А	Pass
2.0		х				X	x	0	5	60		A	Pass
2.0	х					x	x	90	5	60		A	Pass
2.0		х				X	x	90	5	60		A	Pass
2.0	х					x	x	180	5	60		A	Pass
2.0		х				x	x	180	5	60		A	Pass
2.0	х					x	x	270	5	60		A	Pass
2.0		х				x	x	270	5	60		A	Pass
									-				
2.0	х	1	х			х		0	5	60	Differential Mode	А	Pass
2.0	1	х	X			X		0	5	60		A	Pass
2.0	х	1	х			х		90	5	60		А	Pass
2.0	1	х	X			X		90	5	60		A	Pass
2.0	х	1	х			х		180	5	60		А	Pass
2.0	1	х	х			х		180	5	60		А	Pass

emc integrity incorporated

Surge Immunity per IEC 61000-4-5

	М	anufa	ctur	er:	SI	JG	loba	l Solutions			Project N	umber:	B41001		
Custom	er Rep	oresen	tativ	ve:	Da	arric	k F	orester			Tes	t Area:	GP2		
		Ν	Aod	el:	20	005350 (Scan) Rev. B						S/N:	I: S1400005009		
Star	ndard	Refere	ence	ed:	IE	EC 61000-4-5						Date:	October 9, 2	014	
	Т	'empei	ratu	re:	21	.8°C	°C Humidity: 39% Pressure						839 mb		
	Inj	put Vo	oltag	ge:	12	0Va	ac/60Hz								
Conf	Configuration of Unit: Processing Ballots, Playing Audio, Writing to V Drive, Printing to thermal Printer														
	Te	st Eng	gine	er:	M	ark	Nov	'ak							
B41001-4-5.c	doc													FR0100	
Voltage	Pola	rity	L	L	L	Ν	Р	Phase	Number	Delay	Comments		Criteria	Pass /	
(kV)	+	-	1	2	3		Е	(deg)	of Pulses	(sec)			Met	Fail	
2.0	Х		Х			х		270	5	60			А	Pass	
2.0		Х	Х			х		270	5	60			А	Pass	

Surge Immunity per IEC 61000-4-5

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP2
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-5	Date:	October 9, 2014
B41001-4-5 doc		-	FR0100

Figure D1. Surge Immunity Test Setup

Surge Immunity per IEC 61000-4-5

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP2
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-5	Date:	October 9, 2014
B41001-4-5.doc		-	FR0100

Figure D2. Surge Immunity Test Setup – AC Mains

emc integrity incorporated

Surge Immunity per IEC 61000-4-5

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP2
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-5	Date:	October 9, 2014
B41001-4-5.doc			FR0100

Test Equipment List

ID	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
Number				-		
1014	KeyTek	EMC Pro	0203270	Advanced EMC Immunity Tester	05/22/2014	05/22/2015
1184	KeyTek	CEWare32	NA KeyTek EMCPro Control Software for EFT, Surge, H-F		NA	NA
1372	Tektronix	TDS2002B	C103489	Oscilloscope, 60 MHz, 2-channel	01/05/2014	01/05/2015
1548	California Instruments/A metek	1251P	1423A06347	AC Power supply	NA	NA
1553	EXTECH Instruments	445715		Hygro-Thermometer	08/29/2014	08/29/2015

APPENDIX E

Conducted RF Immunity Test Data

emc integrity incorporated

Conducted RF Immunity per IEC 61000-4-6

	Manufac	turer:	SLI Glob	al Solution	5		Project Number:	B41001		
Customer	Represent	ative:	Darrick F	Forester			Test Area:	GP2		
	Ν	Iodel:	2005350	(Scan) Rev	S/N:	S1400005009				
Standa	rd Refere	nced:	IEC 6100	Date: Octobe					2014	
	Temperature: 23.3°C Humidity: 37% Pressure:						839 mb			
	Input Vo	ltage:	120Vac/6	50Hz			-			
Config	uration of	Unit:	Processin	g Ballots, I	Playing Au	idio, Writing to V Dr	ive, Printing to thermal Pr	rinter		
	Test Eng	ineer:	Dean Wy	ant						
B41001-4-6.doc									FR0100	
Frequency	Frequency Modulation			Level	Dwell	Co	mments	Criteria	Pass /	
(MHz)	Туре	%	Freq	(Vrms)	(sec)			Met	Fail	
0.150 - 80.0	AM	80	1 kHz	10	2	AC using M3 CDN			Pass	

Conducted RF Immunity per IEC 61000-4-6

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP2
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-6	Date:	October 6, 2014
B41001-4-6.doc		-	FR0100

Figure E1. Conducted RF Immunity Test Setup

Conducted RF Immunity per IEC 61000-4-6

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP2
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-6	Date:	October 6, 2014
B41001-4-6.doc			FR0100

Figure E2. Conducted RF Immunity Test Setup – AC Mains

emc integrity incorporated

Conducted RF Immunity per IEC 61000-4-6

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP2
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-6	Date:	October 6, 2014
B41001-4-6.doc			FR0100

ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1228	EMCI	EMCI-CDN- M3-16	EMCI013	M3 CDN, 16A, 250 VAC	03/12/2014	03/12/2015
1258	Hewlett Packard	8648C	3537A01572	Signal Generator, 100kHz to 3.2GHz	09/24/2014	09/24/2015
1527	Aeroflex/Wein schel	40-6-34	RX851	Hi pwr Atten 6dB	02/03/2014	02/03/2015
1541	Amplifier Research	75A250A	0445076	75 Watt Amplifier (10kHz - 250MHz)	NA	NA
1548	California Instruments/A metek	1251P	1423A06347	AC Power supply	NA	NA
1553	EXTECH Instruments	445715		Hygro-Thermometer	08/29/2014	08/29/2015

Test Equipment List

APPENDIX F

Power Frequency H-field Test Data

emc integrity incorporated

Power Frequency H-field Immunity per IEC 61000-4-8

Ζ

х

60

	Manu	facturer: S	LI Global Solut	tions		Project Number:	B41001	
Custo	mer Repres	entative: D	arrick Forester			Test Area:	GP2	
		Model: 2	005350 (Scan)	Rev. B		S/N:	S140000500)9
St	tandard Ref	erenced: I	EC 61000-4-8			Date:	October 8, 2	014
	Temp	perature: 2	5.5°C	Humid	lity: 31%	Pressure:	839mb	
	Input	Voltage: 1	20Vac/60Hz					
Co	onfiguration	of Unit: P	rocessing Ballo	ts, Playing	g Audio, Writing to V D	rive, Printing to thermal P	rinter	
	Test E	Ingineer: <u>N</u>	lark Novak					
B41001-4-	8 doc							FD 0100
	0.000							FR0100
Frequer	ncy (Hz)	Field	EUT Axis	Dwell	Cor	nments	Criteria	Pass /
Frequer 50		Field Strength	EUT Axis Location	Dwell Time	Cor	nments	Criteria Met	
-	ncy (Hz)				Cor	nments		Pass /
-	ncy (Hz)	Strength		Time	Cor	nments		Pass /
50	ncy (Hz)	Strength	Location	Time (sec)	Cor	nments	Met	Pass / Fail
50	ncy (Hz) 60	Strength	Location X	Time (sec) 60	Cor	nments	Met	Pass / Fail Pass
50	ncy (Hz) 60	Strength	Location X X	Time (sec) 60 60	Cor	nments	Met A A	Pass / Fail Pass Pass

А

Pass

Power Frequency H-field Immunity per IEC 61000-4-8

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP2
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-8	Date:	October 8, 2014
B41001-4-8.doc			FR0100

Figure F1. Power Frequency H-field Immunity Test Setup.

emc integrity incorporated

Power Frequency H-field Immunity per IEC 61000-4-8

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP2
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-8	Date:	October 8, 2014
B41001-4-8.doc			FR0100

Test Equipment List

ID	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
Number						
1505	EMCI	EMCI-4-8-2m- 1.5m	0002	HField Loop, 2m x 1.5m	08/15/2014	08/15/2015
1548	California Instruments/A metek	1251P	1423A06347	AC Power supply	NA	NA
1549	California Instruments/A metek	1251P	1423A05348	AC power supply	NA	NA
1553	EXTECH Instruments	445715		Hygro-Thermometer	08/29/2014	08/29/2015

APPENDIX G

Voltage Dip and Interrupts Test Data

Voltage Dips and Interrupts per IEC 61000-4-11

	Manufact	urer:	SLI GI	obal So	lutions			Project Number:	B41001	
Customer	r Representa	ative:	Darricl	k Forest	er			Test Area:	GP2	
	M	odel:	200535	50 (Scar	n) Rev. B			S/N:	S140000500)9
Stand	lard Referen	nced:	IEC 61	000-4-1	1			Date:	October 6, 2	2014
	Tempera	ture:	23.3°C		Hu	midity: 37%		Pressure:	839 mb	
	Input Vol		120Va	c/60Hz						
Confi	guration of		Proces	sing Ba	llots, Pla	ying Audio, W	riting to V D	rive, Printing to thermal P	rinter	
	Test Engi		Dean V		· · · · ·			, <u> </u>		
B41001-4-11.d	loc	-		•						FR0100
%	No. of	I	Phase A	ngle (d	ea)	Time	Number	Comments	Criteria	Pass /
Nominal	Cycles	0	90	180	270	between	of tests	Comments	Met	Fail
1 (0111111	0,000	Ŭ	10	100	-/0	dropouts	01 00000			
						(sec)				
						60Hz				
40%	6	х				10	3		А	Pass
40%	6		х			10	3		А	Pass
40%	6			х		10	3		А	Pass
40%	6		1	1	х	10	3		A	Pass
70%	0.5	х				10	3		А	Pass
70%	0.5		х			10	3		A	Pass
70%	0.5			х		10	3		A	Pass
70%	0.5				х	10	3		A	Pass
10/0	010					10	5			1 400
0%	300	х				10	3		А	Pass
0%	300			х		10	3		A	Pass
- , -							-			
40%	60	х				10	3		A	Pass
40%	60		х			10	3		A	Pass
40%	60			х		10	3		A	Pass
40%	60				х	10	3		A	Pass
1070	00			1		50Hz	U			1 400
40%	50	Х				10	3		А	Pass
40%	50		х			10	3		A	Pass
40%	50		<u> </u>	х		10	3		A	Pass
40%	50				х	10	3		A	Pass
70%	50	х				10	3		A	Pass
70%	50	<u> </u>	х			10	3		A	Pass
70%	50			х		10	3		A	Pass
70%	50				х	10	3		A	Pass
					~	10	5			- 400
0%	250	х				10	3		А	Pass
0%	250	<u> </u>		х		10	3		A	Pass
070						10	5			- 400
	1	L	1	1	L. T.i	ine Voltage Va	riations	1		<u>ı </u>
129Vac Line	Voltage Va	riation	s (+7 59	6 of nor		()V) ran for thr			А	Pass
12) , ao Enile	· onuge vi		. (1.5/			. , iun ioi till	110415			1 400
105Vac Line	Voltage Va	riation	s (-12.5	5% of n	ominal 1	20V) ran for	three hours		Α	Pass
	· onuge vi		. 12.2	. /0 01 II	unnur 1		anec nouis			1 400
+/-15% voltage variations. 102 VAC to 138VAC for 15 minutes					Α	Pass				

Voltage Dips and Interrupts per IEC 61000-4-11

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP2
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-11	Date:	October 6, 2014
B41001-4-11.doc			FR0100

Figure G1. Voltage Dips and Interruptions Test Setup.

Voltage Dips and Interrupts per IEC 61000-4-11

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP2
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-11	Date:	October 6, 2014
B41001-4-11.doc			FR0100

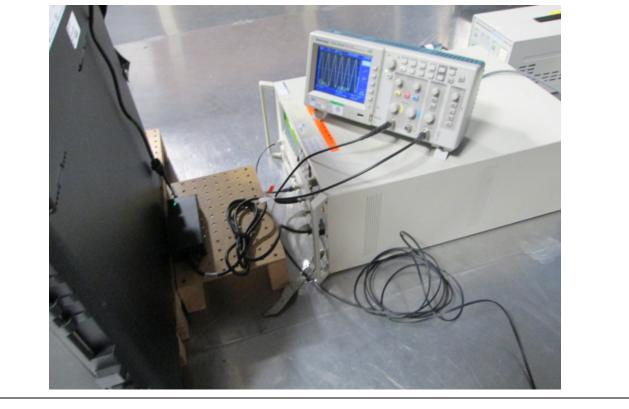


Figure G2. Voltage Dips and Interruptions Test Setup.

Voltage Dips and Interrupts per IEC 61000-4-11

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP2
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-11	Date:	October 6, 2014
B41001-4-11.doc			FR0100

Figure G3. Voltage Dips and Interruptions Test Setup. +/-15% voltage variations

emc integrity incorporated

Voltage Dips and Interrupts per IEC 61000-4-11

Manufacturer:	SLI Global Solutions	Project Number:	B41001
Customer Representative:	Darrick Forester	Test Area:	GP2
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Standard Referenced:	IEC 61000-4-11	Date:	October 6, 2014
B41001-4-11.doc			FR0100

Test Equipment List

ID	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
Number						
1548	California	1251P	1423A06347	AC Power supply	NA	NA
	Instruments/A					
	metek					
1014	KeyTek	EMC Pro	0203270	Advanced EMC Immunity Tester	05/22/2014	05/22/2015
1184	KeyTek	CEWare32	NA	KeyTek EMCPro Control	NA	NA
				Software for EFT, Surge, H-F		
1553	EXTECH	445715		Hygro-Thermometer	08/29/2014	08/29/2015
	Instruments					
1372	Tektronix	TDS2002B	C103489	Oscilloscope, 60 MHz, 2-channel	01/05/2014	01/05/2015

APPENDIX H

EMI/EMC Test Plan

Hart InterCivic Verity Scan, Verity Touch Writer, Ballot Box, Standard and Accessible Booths EMC / EMI Test Plan for compliance with the 2005 Voluntary Voting System Guidelines (VVSG)

By

216 16th St, Suite 700 Denver, CO 80202 303-575-6881 www.SLIglobalsolutions.com

Revision History:

Version	Date Comments		Contributors
0.9	1/29/14	Initial Release	D. Forester
1.0	3/7/14	Updates based on review	D. Forester
2.0	3/20/14	Update serial numbers and Table 1. Added RFI 2007-05 (COTS)	D. Forester
3.0	4/3/14	Added RFI 2008-10 (EFT)	D. Forester
4.0	10/23/14	Update FCC Class B 10m spec. provide maximum flexibility in testing ,updated exit criteria and added section 4.1	D. Forester
5.0	11/3/14	Add ESD Limit Statement	D. Forester

This document is property of SLI Global Solutions, Inc. All tests, test scripts and suites, test plans, procedures, data collection methods and data presentations are property of SLI Global Solutions. The testing referenced in this document was performed in a controlled environment using specific systems and data sets, and results are related to the specific items tested. Actual results in other environments may vary. These results do not constitute a guarantee of performance. The information in this document is provided "As Is" without warranty of any kind.

Tab	le of Contents	
1.0	INTRODUCTION	
1.1	Overview	
1.1	QUALIFICATIONS	
1.3	CLENT	
1.4	COMPANY RESTRICTED INFORMATION	
1.5	Reference Documents	4
2.0	EMC / EMI TEST SUMMARY	
3.0	PRODUCT DESCRIPTION	
3.1	Intended Use	
3.2	Unit Under Test – Verity Scan	
3.3	Unit Under Test – Verity Touch Writer	
3.4	PRODUCT INFORMATION – VERITY SCAN	
	4.1 Power	
	4.2 Services	
3.5	PRODUCT INFORMATION - VERITY TOUCH WRITER	
	5.1 Power	
	5.2 Services 5.3 Support Equipment (SE) – Detailed Information	
3.6	ENGINEERING CHANGES	
3.7	Power Supplies	
3.8	ACCESSORES	
3.9	Oscillator Frequencies	
3.10		
3.11	Software	14
4.0	TEST PLAN	14
	Units Under Test	
4.1	UNITS UNDER TEST	1.
	TIPLE UNITS UNDER TEST OF THE SAME MODEL WITH UNIQUE SERIAL NUMBERS MAY BE USED THROUGHOUT J/EMI TESTING MEETING THE FOLLOWING CRITERIA:	14
	OF UNITS UNDER TEST CAN BE FOUND IN SECTION 3.2 AND 3.3 OF THIS DOCUMENT.	
4.2	OPERATING MODES AND CONFIGURATIONS FOR EMC TESTING	
	2.1 Operating Mode	
	2.2 Device Setup	
	2.3 Configurations	
4.3	TREATMENT OF TEST FAILURES	
4.4	Test Documentation	1
4.5	TEST FACILITY LOCATION	
EMO	C Integrity, 1736 Vista View Drive, Longmont CO 80504	1
5.0	EMC / EMI TESTS	18
5.1	Electromagnetic Emissions	
	1.1 Radiated Electromagnetic Emissions	18
5.	1.2 Conducted Electromagnetic Emissions	
5.2	ELECTROMAGNETIC IMMUNITY	18
	2.1 Immunity Compliance Criteria	18
	2.2 Electromagnetic Susceptibility	19
	2.3 Electrical Fast Transient	
	2.4 Lightning Surge	
5.	2.5 Conducted RF Immunity 2.6 Magnetic Fields Immunity	
-		

5.2.7	Verity EMC / EMI Test Plan Electrical Power Disturbance	21
	ANDLING HARDWARE ANOMALIES AND INCIDENTS	
	Hardware Test Anomalies	
	HARDWARE INCIDENT PROCESS	
List of	f Tables	
TABLE 1: El	MC / EMI TEST REQUIREMENTS SUMMARY FOR HART INTERCIVIC VERITY S	CAN AND VERITY TOUCH WRITER 5
List of	f Figures	
	Verity Voting Configuration	

Hart InterCivic Verity - VVSG EMC/EMI Test Plan v5.0 SLI Global Solutions Restricted Document Duplication Prohibited

Page 3 of 22

Hart InterCivic
Verity EMC / EMI Test Plan

1.0 Introduction

1.1 Overview

This test plan covers the EMC (Electromagnetic Compatibility) and EMI (Electromagnetic Interference) test requirements and methods for the Hart InterCivic Verity 1.0 Scan and Touch Writer, Ballot Box, and Standard / Accessible Booths hereafter known as the Unit Under Test (UUT), to the requirements as stated in Election Assistance Commission 2005 Voluntary Voting System Guidelines (VVSG).

1.2 Qualifications

The UUT supplied by Hart InterCivic is representative of product produced in their volume manufacturing process.

1.3 Client

Hart InterCivic 15500 Wells Port Drive Austin, TX 78728

1.4 Company Restricted Information

This document contains confidential and restricted information and shall not be reproduced outside of SLI Global Solutions without written consent.

This document must be reproduced in whole unless written consent has been attained from SLI Global Solutions.

1.5 Reference Documents

- Election Assistance Commission 2005 Voluntary Voting System Guidelines Vol I Version 1.0
- Election Assistance Commission 2005 Voluntary Voting System Guidelines Vol II Version 1.0
- NIST Handbook 150-22, 2008 Edition: National Voluntary Laboratory Accreditation Program – Voting System Testing. May 2008
- EAC Decision on Request for Interpretation 2007-05 (COTS)
- EAC Decision on Request for Interpretation 2008-02 Battery Back Up for Op Scan
- EAC Decision on Request for Interpretation 2008-10 (EFT)
- EAC Decision on Request for Interpretation 2009-03 Battery Back Up for Central Count
- EAC Decision on Request for Interpretation 2010-01 Voltage Levels and ESD Test
- EAC: NOC 07-05: Voting System Test Laboratory (VSTL) responsibilities in the management and oversight of third party testing.
- EAC: NOC 08-001: Validity of Prior Non-Core Hardware Environmental and EMC Testing.
- SLI Standard Lab Procedure SLP-VC-23: Hardware Test Management
- SLI Standard Lab Procedure SLP-VC-24: Subcontractor Laboratory Management
- Hart InterCivic Verity: EMC/EMI, Environmental, Safety Test Plan, Document Number: 4005516, Rev. A.03

Hart InterCivic Verity - VVSG EMC/EMI Test Plan v5.0 SLI Global Solutions Restricted Document Duplication Prohibited Page 4 of 22

Required	Test	Test Spec.	VVSG	Requirement	Comments	
Flectroma	l gnetic Emissions T	asts	Reference	ur.		
X	Radiated Electromagnetic Emissions	FCC, Part 15 ANSI C63.4	V1, 4.1.2.9 V1, 4.1.7.1 V1, 2.1.4 (b) V2, 4.8	Class B	Internal Battery Not Connected	
x	Conducted Electromagnetic Emissions	FCC, Part 15 ANSI C63.4	V1, 4.1.2.9 V1, 4.1.7.1 V1, 2.1.4 (b) V2, 4.8	Class B	Internal Battery Not Connected	
Electroma	gnetic Immunity Te	sts				
x	Electrostatic Disruption	IEC 61000-4-2 (2008) Ed.2.0	V1, 4.1.2.8 V1, 4.1.7.1 V1, 2.1.4 (b) V2, 4.8	Vote scanning and counting equipment for paper-based systems, and all DRE equipment, shall be able to withstand ±15 kV air discharge and ±8 kV contact discharge without damage or loss of data. The equipment may reset or have momentary interruption so long as normal operation is resumed without human intervention or loss of data. Loss of data means votes that have been completed and confirmed to the voter.	Voting systems are required to be immune to ESD up to the limits of 8 KV, contact discharge, and 15 KV, air discharge. During exploratory pre- testing investigation of the possibility of windowing effects should be explored. I there are indications that a unit has sensitivity at a lower voltage but not at a higher voltage, test levels shall be added to evaluate the immunity at lower voltage levels. (RFI 2010-01) The test levels stated in IEC 61000-4-2, Edition 2.0, contact discharge, are the specified test level only, 8 kV. Air discharge shall be used where contact discharge cannot be applied and all test levels shall be used (2, 4, 8, 15 kV). (RFI 2010-01)	
x	Electromagnetic Susceptibility	IEC 61000-4-3 (1996)	V14.1.2.10 V1, 4.1.7.1 V1, 2.1.4 (b) V2, 4.8	A field of 10 V/m modulated by a 1 kHz 80% AM modulation over the frequency range of 80 MHz to 1000 MHz	1 GHz	
x	Electrical Fast Transient	IEC 61000-4-4 (2004-07) Ed. 2.0	V1, 4.1.2.6 V1, 4.1.7.1 V1, 2.1.4 (b) V2, 4.8	±2kV AC & DC external power lines ±1kV on Input / Output lines (signal, data, control lines) longer than 3 meters(signal, data, control lines) longer than 3 meters Repetition Rate for all transient pulses will be 100 kHz	Internal Battery Connected The Standard specified in Volume II Section 4.8 is mistakenly cited as IEC 61000-4-4 (1995-01), and should instead properly be cited as IEC 61000 4-4 (2004-07) Ed. 2.0 which supports the 100 kHz repetition rate for all transient pulses specified in Volume I, Section 4.1.2.6(c). (RFI 2008-10)	
x	Lightning Surge	IEC 61000-4-5 (1995-02)	V1, 4.1.2.7 V1, 4.1.7.1 V1, 2.1.4 (b) V2, 4.8	±2 kV AC line to line; ±2 kV AC line to earth; ±0.5 kV DC line to line >10m; ±0.5 kV DC line to earth >10m; and ±1 kV I/C sig/control >30m.	Internal Battery Connected	
X	Conducted RF Immunity	IEC 61000-4-6 (1996-04)	V1, 4.1.2.11 V1, 4.1.7.1	10V rms,150 KHz to 80 MHz with an 80% AM with a 1 KHz sine wave AC & DC	Internal Battery Connected	

2.0 EMC / EMI Test Summary

Table 1: EMC / EMI Test Requirements Summary for Hart InterCivic Verity Scan and Verity Touch Writer

Required	Test	Test Spec.	VVSG Reference	Requirement	Comments
			V1, 2.1.4 (b) V2, 4.8	power 10V rms sig/control >3 m, 150 KHz to 80 MHz with an 80% AM with a 1 KHz sine wave	
x	Magnetic Fields Immunity	IEC 61000-4-8 (1993-06)	V1,4.1.2.12 V1, 4.1.7.1 V1, 2.1.4 (b) V2, 4.8	30 A/m at 60 Hz	Internal Battery Connected
x	Electrical Power Disturbance	IEC 61000-4-11 (1994-06)	V1, 4.1.2.5 V1, 4.1.7.1 V1, 2.1.4 (b) V2, 4.8	Voltage dip of 30% of nominal @10 ms; Voltage dip of 60% of nominal @100 ms & 1 sec Voltage dip of >95% interrupt @5 sec Surges of +15% line variations of nominal line voltage	Internal Battery Connected

Hart InterCivic Verity - VVSG EMC/EMI Test Plan v5.0 SLI Global Solutions Restricted Document Duplication Prohibited

Page 6 of 22

3.0 Product Description

3.1 Intended Use

For the Verity 1.0 refer to EMC Integrity's detailed Product Data Sheets below starting with section 3.4 Product Information. The Product Data Sheets will be used by EMC Integrity's test technicians during testing and also in writing the test reports.

3.2 Unit Under Test - Verity Scan

Part No.	art No. Serial No. Description		Qty	Revision No.	
2005350	S1400005009 S1400005809 S1400005909	Verity Scan - is Verity's polling place scanning solution for paper ballots. Scan is paired with a purpose-built ballot box to ensure accurate, secure, and private ballot scanning and vote casting for each voter.	3	В	
2005357	X14000102	Ballot Box – Used with Verity Scan.	1	A	

3.3 Unit Under Test – Verity Touch Writer

Part No.	Serial No.	Description	Qty	Revision No.
2005352	W1400006609 W1400007309 W1400007409 W1400007609	Verity Touch Writer - is a polling place ballot marking device solution for paper ballots. Touch Writer is paired with a commercial off the shelf printer to allow the voter to mark then print their vote selections. Using Touch Writer reviewing and acceptance in conjunction with Verity Scan provides the voter with a reviewable paper ballot that is accurately captured through scanning, for tabulation as a voter's cast vote record (CVR).	4	В
2005358	M14000102	Standard Booth - Used with Touch Writer	1	A
2005359	L14000102	Accessible Booth - Used with Touch Writer	1	A

3.4 Product Information – Verity Scan

Product Information General	
Product Name (as it should appear on test report)	Verity Scan
Model Number (of UUT to be tested)	2005350 (Scan), 2005357 (Ballot Box)
Functional description of product (what is it, what does it do, etc.)	Polling Place Scanning Device – scans paper ballots
List all modes of operation	Ballot Scanner
Can modes be operated simultaneously? If so, explain.	No
What mode(s) will be used for testing?	Ballot Scanning USB Stick Write Test Thermal Printer Test

Product type (IT, Medical, Scientific, Industrial, etc.)	IT	
Is the product an intentional radiator	No	
Product Dimensions	Verity Scan Storage/Shipping Carton - 21½"Wx17½"Dx19 ¾"H Device Closed – 18.8"Wx17.39"Dx7.72"H Device Open – 18.8"Wx21.41"Dx20.86"H Ballot Box Collapsed for Storage -	
	26"Wx5.23"Dx28.25"H	
Product Weight	Deployed for Use – 26"Wx23.25"Dx28.25"H Scan - 27lbs Ballot Box - 26.5lbs	
Will fork lift be required	No	
Applicable Standards, if known	VVSG 2005: FCC Part 15 Class B IEC 61000-4: -2, -3, -4, -5, -6, -8, -11	
Describe all environment(s) where product will be used (residential, commercial, industrial, etc.)	Business Recommended Operating Environment Temperature: +50F to +95F Humidity: 10% to 90% Recommended Storage Environment Temperature: -4F to +140F Relative Humidity: <90%	
Does product consist of multiple components? (If yes, please describe each system component)		
Cycle time > 3 seconds? (If yes, how long?) Yes for shoeshine testing - ~3 s time Yes for normal usage - ~420 se time		
Highest internally generated frequency	Tablet CPU – 1.86GHz	
Product Set-up Time	<15 minutes	
Boot up time in the event of an unintentional power down	Booting into Windows takes ~60 seconds, we will use simulation tools to exercise the system during testing Booting into Verity Application with polls open takes ~300 seconds	

Hart InterCivic Verity EMC / EMI Test Plan

Model No.	Description	I/O Type		Length	Patient	
		UUT- UUT	UUT - SE	(m)	Connect? (See Note)	QTY
Verity Scan	Polling place scanning device					1
Ballot Box	Ballot Box used with Verity Scan				-	1

applies Unity to medical devices

3.4.1 Power

Power Requirements – Verity Scan				
Does/can product connect to AC mains? (If so, can the UUT function when connected to AC?)	Device is DC powered, there is a 85W AC/DC power supply (Yes)			
Input Voltage Rating as it appears on unit, power supply, or power brick	24VDC, 2.4A			
Input Current (specify @ 115 VAC/60 Hz)	XP Power AHM85PS24 - 85W, ~1.0A @ 100V – 0.4A @ 240V Power Brick Input ~1.0A			
Single or Multi-Phase (If multi-phase, specify delta or wye)	Single			
Is input power connector two-prong (Hot & Neutral) or 3-prong (H, N, Ground)	3-prong			
Does UUT have more than 1 power cord? (If yes, explain.)	No			

3.4.2 Services

Services Requested – Verity Scan				
Testing Required (Formal or Engineering)	Formal			
Special/specific test considerations (i.e. Engineering testing requested, extended range testing, etc.)				
Check all countries/economic areas in which product will be sold.	United States (FCC – emissions only)	х		

Hart InterCivic Verity - VVSG EMC/EMI Test Plan v5.0

SLI Global Solutions Restricted Document Duplication Prohibited

Page 9 of 22

	Canada (CSA – emissions only)	
	European Union (CE Mark)	
	Australia/New Zealand (C-tick)	
	Taiwan (BSMI)	
	Korea (KCC)	
	Japan (50 Hz)	
	Japan (60 Hz)	
	China (CCC)	
	Others (please specify)	
If this is for engineering, will a test report be required?	Yes	
Will you require a recommendation for product safety?	TBD	

Product Information - Verity Touch Writer 3.5

Product Information General			
Product Name (as it should appear on test report)	Verity Touch Writer		
Model Number (of UUT to be tested)	2005352 (Touch Writer)		
	2005358 (Standard Booth)		
	2005359 (Accessible Booth)		
Functional description of product (what is it, what does it do, etc.)	Polling Place Ballot Marking Device		
List all modes of operation	Ballot Marking,		
Can modes be operated simultaneously? If so, explain.	No		
What mode(s) will be used for testing?	USB Stick Write Test		
	Audio Playing Test		
	USB Printer Test		
	Thermal Printer Test		
	Ballot Marking (Post-test)		
Product type (IT, Medical, Scientific, Industrial, etc.)	IT		
Is the product an intentional radiator	No		
Product Dimensions	Touch Writer		
	Storage/Shipping Carton - 21½"Wx17½"Dx19 ¾"H		

EMC/EMI Test Plan v5.0

Duplication Prohibited

	Device Closed - 18.8"Wx17.39"Dx7.72"H
	Device Open - 18.8"Wx21.41"Dx20.86"H
	Standard Booth
	Collapsed for Storage – 28.72"Wx5.57"Dx39.69"H
	Deployed for Use – 28.54"Wx23.17"Dx33.56"H
	Privacy Screen - adds 23.31" to Height
	Accessible Booth
	Collapsed for Storage 38.8"Wx5.83"Dx33"H
	Deployed for Use - 38.8"Wx25.45"Dx30.19"H
	Privacy Screen – adds 23.31" to Height
Product Weight	Touch Writer - 27lbs
	Standard Booth w/ storage bag - 13lbs
	Accessible Booth w/ storage bag - 14lbs
Will fork lift be required	No
Applicable Standards, if known	VVSG 2005: FCC Part 15 Class B
	IEC 61000-4: -2, -3, -4, -5, -6, -8, -11
Describe all environment(s) where product will be	Business
used (residential, commercial, industrial, etc.)	Recommended Operating Environment
	Temperature: +50F to +95F
	Humidity: 10% to 90%
	Recommended Storage Environment
	Temperature: -4F to +140F
	Relative Humidity: <90%
Does product consist of multiple components? (If	Yes –
yes, please describe each system component)	Touch Writer attaches to ballot booth in normal use – it is expected to use this configuration only for EMC/EMI testing of Verity Touch Writer OKI Data Printer – B431d
Cycle time > 3 seconds? (If yes, how long?)	Yes for normal usage - ~420 second cycle time
Highest internally generated frequency	Tablet CPU – 1.86GHz
Product Set-up Time	<15 minutes
Boot up time in the event of an unintentional	Booting into Windows takes ~60 seconds,
power down	testing with simulation applications takes ~60 seconds.
	Booting into Verity Application with polls oper takes ~600 seconds

lengths below	connections on the unit(s) uno		Bushara Adama Di					
Model No.	Description		U	1/0 1 UT- UT	Type UUT - SE	Lengt h (m)	Patient Connect? (See Note)	QTY
Verity Touch Writer	Polling place scanning device	ce		SB	USB		n/a	1
Verity Access	Audio-Tactile Interface (ATI) modul	le U	SB		2m	n/a	1
OKI B431d	Printer				USB	2m	n/a	1
Standard Booth	Standard Booth used with V Touch Writer	/erity					n/a	1
Accessible Booth	Accessible Booth used with Touch Writer	Verity					n/a	1
Note: "Patient (Connect" column applies only t	to media	cal devid	æs.				
3.5.1 Pow	er							
Power Require	ments Verity Touch Writer							
AC?)	UUT function when connecte Rating as it appears on unit, p er brick		(Yes) 24VDC,	2.4	A			
Input Current (s	pecify @ 120 Vac/60 Hz)		XP Power AHM85PS24 - 85W, ~1.0A @ 100V – 0.4A @ 240V Power Brick Input ~1.0A					
Single or Multi-	Phase specify delta or wye)		Single					
Is input powe	er connector two-prong (He ong (H, N, Ground)	ot & 3-prong						
Does UUT have explain.)	e more than 1 power cord? (If	f yes,	No					
3.5.2 Serv	vices							
Services Requ	ested Verity Touch Writer							
Testing Require	ed (Formal or Engineering)	Formal						
Special/specific	test considerations (i.e. ting requested, extended tc.)							

product will be so	ld.			only)					
		(CSA -	- emissions o	nly)					
			n (CE Mark)						
	Australia	/New 2	Zealand (C-tic	k)					
				Taiwan ((BSMI)				
				Korea (k	(CC)				
				Japan (5	50 Hz)				
				Japan (6	60 Hz)				
				China (C	CCC)				
				Others (please	specify)			
If this is for engine required?	t be								
Will you require a recommendation for product safety?									
3.5.3 Suppo	rt Equipment	(SE) – De	etailed	Informat	ion				
Support Equipm	ent (SE)								
Name	Model No	5. S	Serial	No.		Description			
		AK	43004	558A0					
OKIDATA	B431d			060A0 066A0		Dalla	t Drintor		
ORIDATA	D4310	1 2010		784A0		Ballot Printer			
	_	AK	47007	789A0					
SE I/O Cabling									
Model No.		Desc	riptio	n		Shielded?	Length	Quantity	
N/A									
SE Software/Firm	nware								
Name	Version/F	Revision				Functionality	У		
3.6 Engineer	ring Changes	5							
Engineering Chan	ge (EC)#	Descripti	on						
N/A									
				tions Restri	atad De	umont		Page 13 of	
art InterCivic Verity - V	Nec	CI I CIAL							

	r Supplies							
Manufacturer	Model		1.1	rial No.	Input		and Type	
XP Power	AHM85PS24	– 85W	K12	2460073 / 2005415	~1.0A	@ 100V	– 0.4A @ 240\	
3.8 Acces	sories							
Туре		N	lode	Fun	ction			
Verity Test Ballo	ots							
Verity Keys					d Election			
Verity vDrives (/ USB Drives (2 p	Apacer / AMP)			Write	e Data to vDriv	e		
		vice						
Thermal paper (Scanner cleanin		vice						
ocamer cleanin	y ni							
3.9 Oscill	ator Freque	ncies		I				
Frequency				Description of Use	9			
0.307Mhz								
12Mhz			_					
240Mhz			\rightarrow					
12Mhz 24Mhz			-	ATI, Base Board ATI, PDI Scanner				
1.86GHz			-	CPU				
	onnecting C	ables						
Туре	Descript	ion			Shielded?	Length	Quantity	
3.11 Softw	are							
Туре	V	ersion		Des	cription			
Verity Scan	0	.17.11.168	874	For	Verity Scan			
Verity Touch V	Vriter 0	.17.11.168	874	For	For Verity Touch Writer			
_								
					d Document			

Hart InterCivic Verity EMC / EMI Test Plan

4.0 Test Plan

4.1 Units Under Test

Multiple Units Under Test of the same model with unique serial numbers may be used throughout EMC/EMI testing meeting the following criteria:

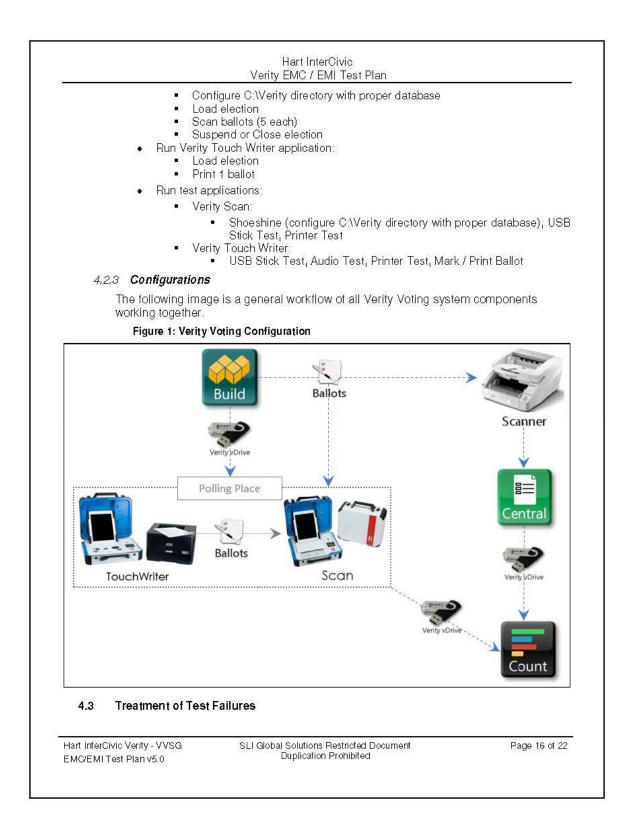
- · To maximum scheduling flexibility
- UUT are identical models
- All hardware components are list in Vendor's bill of materials

List of Units Under Test can be found in section 3.2 and 3.3 of this document.

4.2 Operating Modes and Configurations for EMC Testing

4.2.1 Operating Mode

Prior to and during testing, proper operation of the UUT shall be confirmed using Hart InterCivic software. An operational status check shall be performed prior to fully exercise the UUT and ensure that no damage has occurred as a result of the test.


Verity Scan and Very Touch Writer will be in a test election mode and the following Verity applications will be executed:

- Shoe Shine test application provides a method of exercising the integrated scanner in Verity Scan. When application runs a sheet of paper is inserted into the scanner and the scanner will continuously scan the inserted paper through its paper feeder, the scanned images are not saved. To stop the scanning process the paper must be grabbed and pulled out of the scanner. The scan rate is approximately once every 15 seconds
- Audio Test application is used to test the Audio playback in Verity Touch Writer. This requires the Verity Access audio-tactile interface device be plugged into the Access port on the Verity Touch Writer and headsets or speakers be plugged in to the audio out port on the Access device. The audio played is a file that is specified in the applications folder. The audio track should be short, less than 5 seconds long; the audio application will play the MP4 audio file every 23 seconds with 17 second delay until the application is closed.
- USB Stick Test is an application to write data to either of the USB ports that are
 inside Verity Scan and Touch Writers secure device compartment. This application
 uses a command line to specified location of the file to write and how often to write,
 the data written is Date-Time; by default the Date-Time is written at an approximate
 once an minute rate.
- Printer Test is an application to print to the thermal printer integrated into Verity Scan and Touch Writers, in addition it can be configured, thru a configuration file, to print data to a USB printer connected to the Touch Writers printer port. The data printed is Date-Time; by default the Date-Time is printed at an approximate once a minute rate and once a five minute rate.

4.2.2 Device Setup

- Touch Writer will include OKI B431d COTS printer
- Prior to each test Scan will have scanner cleaned prior to running Verity Scan application
- Run Verity Scan application:

Hart InterCivic Verity - VVSG EMC/EMI Test Plan v5.0 SLI Global Solutions Restricted Document Duplication Prohibited Page 15 of 22

Hart InterCivic Verity EMC / EMI Test Plan

Failures of EMC tests or failures of the exercising software to perform shall be documented in the EMC test report.

4.4 Test Documentation

A test report shall be attained from the test lab that meets the pertinent requirements of EN45001, and ISO/IEC17025, "General Requirements of Testing and Calibration Laboratories".

4.5 Test Facility Location

EMC Integrity, 1736 Vista View Drive, Longmont CO 80504

Hart InterCivic Verity - VVSG EMC/EMI Test Plan v5.0 SLI Global Solutions Restricted Document Duplication Prohibited

Page 17 of 22

Hart InterCivic
Verity EMC / EMI Test Plan

5.0 EMC / EMI Tests

5.1 Electromagnetic Emissions

Objective: To verify that the electromagnetic emissions generated by the product under normal use and in the product's intended environment are below a level as specified by the VVSG.

5.1.1 Radiated Electromagnetic Emissions

<u>Test Method:</u> FCC Part 15, Radio Frequency Devices <u>Deviations from Test Method:</u> None <u>Exit Criteria:</u> The UUT shall meet the following emissions limits:

Frequency Band (MHz)	Class B Equipment 10m Measurement Distance (dBuV/m)
30 – 88	29.5
88-216	33.1
216 - 960	36.6
960-1000	43.5
(GHz) 1000-5000	43.5

5.1.2 Conducted Electromagnetic Emissions

Test Method: FCC Part 15, Radio Frequency Devices

Deviations from Test Method: None

Exit Criteria: The UUT shall meet the following emissions limits:

Frequency Band	Class B Equipment	
(MHz)	Quasi-Peak Measurement	Average Measurement
	(dBuV)	(dBuV)
0.15 - 0.5	66 decreasing with the log of the frequency to 56	56 decreasing with the log of the frequency to 46
0.5 - 5.0	56	46
5.0 - 30	60	50

5.2 Electromagnetic Immunity

Objective: To verify that the product performs as intended when exposed to different types of electromagnetic energies that may be encountered under normal use in the product's intended environment.

5.2.1 Immunity Compliance Criteria

Criteria A: The UUT shall be able to withstand the test without disruption of normal operation or loss of data.

Criteria B: The UUT shall be able to withstand the test without damage or loss of data. The equipment may reset or have momentary interruption so long as normal operation is resumed without human intervention or loss of data. Loss of data means votes that have been completed and confirmed to the voter.

Hart InterCivic Verity - VVSG EMC/EMI Test Plan v5.0 SLI Global Solutions Restricted Document Duplication Prohibited Page 18 of 22

Cr	iteria C: The (COTS and sup	port equip	EMI Test Plan ment may have temporary lo	ss of function or
	gradation of po stem reset.	erformance, the	e correcti	on of which requires operator	intervention or
Ele		I: IEC61000-4-;		Electrostatic Disruption Test, uired ESD limits for all ESD te	
Test Location			u	Discharge Voltage	
Indiract Canto				+/-(kV) 2.00, 4.00, 8.00	
Indirect Contac Indirect Contac	21. 1000-001			2.00, 4.00, 8.00	
	to Metallic Surf	faces		2.00, 4.00, 8.00	
	to Insulated Su			2.00, 4.00, 8.00, 15.00	
an Bioonaigeo			ad Non		, ,
	Exit Criteria:	<u>rom Test Meth</u> : B	10a: None	÷	
5.2.2		- netic Susceptil	bility		
	Test Method	I: IEC61000-4-3	-	ed, Radio-Frequency, Electro	magnetic Field
	Immunity Tes Test Levels:	10.2 2			
Frequency Ra (MHz)	nge	Test Level (V/m)	Modulati	on / Sweep	
80.0 to 1000.0		10	80% AM	at 1.0kHz	
			1% steps	with 3s dwell	
Clock Frequen	cies	10		at 1.0kHz with 3s dwell	
	Deviations f	rom Test Meth			
	Exit Criteria	A			
5.2.3	Electrical Fa	st Transient			
				al Fast Transient Test, (1995	-01)
	Note: Repetit	ion Rate for all	transient	pulses will be 100 kHz	
	Test Levels:				
Coupling Mode	÷			Test Voltage +/- kV	
AC & DC Line	Cord			2.0	
All external wir	res >3m no cont	trol		1.0	
All OAtornia wi		rom Test Meth	od: Non	9	
An external wi					
An external wi					
	Exit Criteria:	. 5			
	Exit Criteria:			Desired	B 100 (10) (10)
Hart InterCivic \ EMC/EMI Test F	Exit Criteria:			s Restricted Document on Prohibited	Page 19 of 22

5.2.4	Lightning Surge Test Method: IEC6 Test Levels:	1000-4-5, Lightning	Surge Test, (199	5-02)
Coupling Mod	le		est Voltage	
			-/- kV	
Differential M		2		
Common Moo		2	local contract of the second se	
Differential M Common Mod			0.5 0.5	
I/O sig/contro		1		
5.2.5	Exit Criteria: B Conducted RF Imm Test Method: IEC6 Frequency Fields, (1 Test Levels:	1000-4-6, Immunity	to Conducted Dis	turbances, Induced by Radio-
Test Point	oint Frequency Ra (MHz)		Test Level (Vrms)	Modulation / Sweep
AC & DC Power >3m in length		0.150Khz to 80Mh	z 10	80% AM at 1.0Khz 1% steps with 3s dwell
I/O cables >3	M in length	Clock Frequencies	10	80% AM at 1.0Khz 1% steps with 3s dwell
5.2.6	Deviations from Te Exit Criteria: A Magnetic Fields Im. Test Method: IEC6 06) Test Levels: 30 A/m Deviations from Te Exit Criteria: A	munity 1000-4-8, Power Fi n at 60 Hz	equency Magnetic	e Field Immunity Test, (1993-

Hart InterCivic Verity EMC / EMI Test Plan

5.2.7 Electrical Power Disturbance

Test Method: IEC61000-4-11, Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests, (1994-06)

Test Levels:

Electrical Power Disturbance

30% dip @ 10ms 60% dip @ 100 ms and 1 sec

> 95% interrupt @ 5 sec

Surges of ±15% line variations of nominal line voltage

Electric power increases of 7.5% and reductions of 12.5% of nominal specified power supply for a period of up to four hours at each power level

Deviations from Test Method: None

Exit Criteria: A

Hart InterCivic Verity - VVSG EMC/EMI Test Plan v5.0 SLI Global Solutions Restricted Document Duplication Prohibited Page 21 of 22

Hart InterCivic Verity EMC / EMI Test Plan

6.0 Handling Hardware Anomalies and Incidents

6.1 Hardware Test Anomalies

An anomaly with the subcontractor's test equipment or a procedural misstep can cause a test to fail. For any suspected test equipment issue or procedural error, analysis will be performed and the decision whether to continue testing based on the severity of the anomaly will be appropriately tracked. The subcontractor test lab will issue a corrective action to address any test equipment and/or procedure errors. This is part of the hardware test subcontractor's quality system process that allows the hardware test lab to train all personnel, repair/calibrate equipment, and prevent any recurrence.

6.2 Hardware Incident Process

For every test failure of any voting system component at the hardware test lab, the lab completes a data sheet (per their laboratory procedures and templates) and immediately informs the SLI Hardware Specialist. This can be communicated in the daily status update, with the data sheet attached.

- <u>Failure Analysis</u>: Once a failure has occurred, the SLI Hardware Specialist will be involved with the subcontractor test lab(s) to identify the hardware discrepancy in the device. The results of the analysis will be documented and tracked in the discrepancy reporting tool, and the ECO database under Hardware Incident. The analysis will focus on the failure, what caused the failure, the severity (minor or major), and possible impacts to other testing.
- <u>Mitigation:</u> The SLI Hardware Specialist monitors any work done by the manufacturer, with the full understanding of what is occurring and why.
 - The Manufacturer will document what work is done and the SLI Hardware Specialist will sign off on or can stop the work at any time.
 - The Hardware Specialist will determine the number of "minor" fixes the manufacturer can incorporate without a re-start of the test.
 - A minor change made by the manufacturer can include grounding the chassis or adding ferrites.
 - Any major component replacement is cause for failing a test and requiring a restart. <u>Example</u>: Bad motherboard. <u>Analysis</u>: What was the cause; did the ESD test cause the motherboard to malfunction? Does this impact other hardware tests? The Manufacturer can only replace like for like components and this process must be monitored by the SLI Hardware Specialist.
 - Any modification to the equipment is followed up with the related manufacturer EC(s). All related ECs must be entered into the hardware test report and the certification test report

When issues are identified during hardware environmental testing, they result in discrepancies. Discrepancies are tracked in the ECO database under the "Hardware Test Incident" category. The incident number will be tracked along with the equipment that is taken out of testing due to the failure.

Hart InterCivic Verity - VVSG EMC/EMI Test Plan v5.0 SLI Global Solutions Restricted Document Duplication Prohibited Page 22 of 22

APPENDIX I

EMI Test Log

EMI Test Log

Manufacturer:	SLI Global Solutions.	Project Number:	B41001
Model:	2005350 (Scan) Rev. B	S/N:	S1400005009
Customer Representative:	Darrick Forester		
Standard Referenced:			
			FR0105

10m Emissions

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials
	6001	October 3,	Initial actual time		0.5	Complete	MT
	0001	2014	Initial setup time		0.5	Complete	1111
		1100-1130	Radiated Emissions				
		1100 1150	Engineering / Trouble-Shooting				
RE	1342	1130-1200	Test #1: Radiated Emissions, 30 MHz - 1 GHz, 8 Rads, 4		0.5		MT
			Heights, 3 sec. dwell, ref. level = 80 dBuV , 10 meter				
			distance				
			120 VAC / 60 Hz				
		1200-1230	Lunch				MT
		1230-1400	Continue:		1.5	Pass	MT
			Test #1: Radiated Emissions, 30 MHz - 1 GHz, 8 Rads, 4				
			Heights, 3 sec. dwell, ref. level = 80 dBuV , 10 meter				
			distance				
			120 VAC / 60 Hz				
RE	1341	1400-1500	Test #2: Radiated Emissions, 1 GHz - 10 GHz, 16 Rads, 2		1.0	Pass	MT
			Heights, 3 sec. dwell, ref. level = 107 dBuV, 3 meter				
			distance				
			120 VAC / 60 Hz				
CE	2341	1500-1600	Test #3: Conducted Emissions, 150 kHz - 30 MHz		1.0	Pass	MT
			120 VAC / 60 Hz				
			Regular ho	urs:	4.5]	
			Overtime/Drem he			1	

Overtime/Prem hours: Total hours:

4.5

Ground Planes / CALC

Test	Test	Date	Event	0	Time	Result	Initials
	Code			Т	(hrs)		
4-3	4354	October 6,	Radiated RF Immunity		4.0	Pass	CL
		2014	10 V/m, 80 - 1000 MHz, 1% Step, 80% AM, 1kHz sine, 3s				
		0800 - 1200	dwell				
			120 VAC / 60 Hz				
4-4	4411	October 6,	Electrical Fast Transient / Burst		1.0	Pass	MN
		2014	Mains: +/- 2kV, I/O: +/- 1kV, rep rate 100 kHz.				
		1230 - 1330	(AC main & No I/O >3m)				
			120 VAC / 60 Hz				

Ground Planes / CALC

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials
4-6	4622	October 6,	Conducted RF Immunity		1.5	Pass	MN
		2014 1330 - 1500	10Vrms, 0.15 - 80 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell				
			(AC main & No I/O >3m) 120 VAC / 60 Hz				
4-11	4191	October 6, 2014	Voltage Dips and Interruptions 70% nom, 0.5 cycles / 40% nom, 5 cycles / 0% nom, 250		1.0	Pass	MN
		1500 - 1600	cycles (See Protocol for Specifics) 120 VAC / 60 Hz				
4-11	4194	October 8, 2014 0800 - 1200	Voltage Dips and Interruptions Electric power increases of 7.5% and reductions of 12.5% of nominal specified power. (See Protocol) TBD		4.0		MN
		1200 - 1230	Lunch				MN
		1230 - 1500	Continuing Electric power increases of 7.5% and reductions of 12.5%		2.5	Pass	MN
4-8	4831	1500 - 1600	Power Frequency H-Field Immunity 30A/m, 50 / 60 Hz, 3 axes 120 VAC / 60 Hz		1.0	Pass	MN
4-5	4596	October 9, 2014 0800 - 1400	Surge Immunity Mains: +/- 2kV CM, +/- 2kV DM, (0, 90, 180, 270) (See Protocol for Specifics) 120 VAC / 60 Hz		6.0	Pass	TW
4-2	4295	1400-1600	Electrostatic Discharge +/- 2, 4, 8kV Contact, +/-2, 4, 8, 15kV Air (See Protocol for Specifics) 120 VAC / 60 Hz				TW
			ESD straps measure to 935 and 953 K Ohms, performed ESD pre-test.				TW
			At -15kV, air discharges caused the led to go out				TW
			Modification for compliance: Client swapped power bricks with same model # AHM85PS24, SN: K12460009 Original power brick SN: K1260015				TW
			No problems occurred with replacement power brick				
			Completed all VCP and HCP testing and completed all testing on power brick		2.5		TW
		October 10, 2014	Air discharge at +8.4 kV to power inlet board connector.		2.0	Fail	KJ
		0800-1000	Air discharge at +8.4kV and +15kV to printer caused the ballot to stop "shoe shining". The "shoe shine" application is for testing only. With normal user operation the ballot would not be spit back out. This is not considered a failure.				
			Air discharge found at +15kV to LED above printer. Worker poll button on back and touch screen.				
			Air discharge found at -15kV to printer, LCD above printer, touch screen, worker poll button, power button and power inlet cable on back.				
			-15kV air discharge to poll worker LED caused it not to light at the end of the test				
			-15kV air discharge to poll worker LED caused the LED to go out.				

Ground Planes / CALC

Test	Test	Date	Event		0	Time	Result	Initials
	Code				Т	(hrs)		
	5002	1000-1200	ESD engineering / Trouble-Shooting			2.0	Complete	KJ
				Regular hou	rc.	32.0		
				0		52.0		
				Overtime/Prem hou	irs:			
				Total hou	irs:	32.0		

			Change Order #: CO2014071803_B			
4-2	4295	October 22,	The modifications done to the unit for this retest are:	4.0		MN
		2014	A - Wrapped 3 sides of the power brick with Lexan Label\			
		0800 -1200	B – Installled new backplate with clear Lexan Label over			
			the LEDs			
			Pretest OK, ground cables 951 and 915 Ohms			MN
			This is a different unit from the last time these models		Fail	MN
			were tested. This is sn: S1400005809. Previous unit was			
			sn: S1400005009			
			At +15kV on led above printer, stopped the unit, "shoe			
			shine" operation did not continue and unit shutdown.			
			Installed a new test utility and could not repeat the failure.			
			15kV discharge to "teeth" on printer caused unit to			
			shutdown. Poll worker LED no longer functions.			
		1200 - 1230	Lunch			MN
		1230 - 1330	Did a bit of trouble shooting on the LED above printer and	1.0		MN
			the "teeth" - the unit stopped operating. Had to reboot			
			unit.			

Regular hours:5.0Overtime/Prem hours:5.0Total hours:5.0

	Change Order #: CO2014071803_E					
4-2	4295	October 24,	The modifications done to the unit for this retest are:		4.0	 MN
		2014	A - Wrapped 3 sides of the power brick with Lexan Label\			
		1230 - 1630	B – Installled new backplate with clear Lexan Label over			
			the LEDs			
			Replaced the scanner component			
			Replaced the baseboard			
			Replaced the back panel.			
			All components from the same mdel and bill of materials.			
			Pretest OK, ground cables 951 and 915 Ohms			 MN

			. This is sn: S1400005809 At +15kV on led above printer, stopped the unit, "shoe shine" operation did not continue and unit shutdown. Installed a new test utility and could not repeat the failure. 15kV discharge to "teeth" on printer caused unit to shutdown. Poll worker LED no longer functions.		Fail	MN
4-2	4295	November 4, 2014 0800-1000	Re-Test Electrostatic Discharge +/- 2, 4, 8kV Contact, +/-2, 4, 8, 15kV Air (See Protocol for Specifics) 120 VAC / 60 Hz	2.0	Pass	DW

Regular hours: Overtime/Prem hours: Total hours:

4.0 4.0

APPENDIX J

Laboratory Accreditations

Nemko Laboratory Authorization Authorization: ELA 215

EMC Laboratory: EMC Integrity, Inc. 1736 Vista View Drive Longmont, Colorado 80504 USA

Scope of Authorization: All CENELEC standards [ENs] for EMC that are listed on the accompanying page, and all of the corresponding CISPR, IEC and ISO EMC standards that are listed on the accompanying page.

Nemko has assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against <u>ISO/IEC 17025</u> or equivalent. The laboratory also fulfils the conditions described in Nemko Document <u>NLA -10</u>. During the visit by the Nemko representative it was found that the Laboratory is capable of performing tests within the Scope of the Authorisation.

Accordingly, Nemko will normally accept test results from the laboratory on a partial or complete basis for certification of the products.

In order to maintain the Authorisation, the information given in the pertinent NLA-10 must be carefully followed. Nemko is to be promptly notified about any changes in the situation at the Laboratory, which may affect the basis for this Authorisation. The Authorisation may be withdrawn at any time if the conditions are no longer considered to be fulfilled.

The Authorisation is valid through June 30, 2015.

Dallas, Texas, USA. For and on behalf of Nemko AS:

Liskettening

T.B. Ketterling, V Nemko ELA Co-ordinator Region: North America

Nemko AS Gaustadalléen 30 P.O.Box 73 Blindern N-0314 Oslo Norway T +47 22 96 03 30 F +47 22 96 05 50 Enterprise number NO974404532

1(2)

NLA 3 ED3

SCOPE OF AUTHORIZATION

Capability to perform a basic test implies also that any product (family) standard calling up this basic test is also within the scope if mentioned below or not.

100	an the acope in mentioned below of not.	6 W
	neric & Product – Family Stand	
EN 55011 :1998+A1 :1999 +A2 :2002 EN 55011:2007 +A2:2007 EN 55011:2009 +A1:2010 CISPR 11:1997 (Modified) + A1:1999 + A2:2002 CISPR 11 Ed.4.1 CISPR 11 Ed.5.1 (2010-7)	EN55014:1997 +A1:2008 EN 55014-1:2006 +A1:2009 EN 55014-1:2000 + A1:2001 + A2:2002 CISPR 14-1:2000 + A1:2001 + A2:2002 CISPR 14-1:2005 +A1:2008 CISPR 14-1:2005 +A1:2008	EN 55014-2:1997 + A1:2001 CISPR 14-2:1997 + A1:2001 +A2:2008 CISPR 14-2 Ed. 1.2
EN 55022: 1998+ A1:2000, +A2:2003 CISPR 22: 2003+ A1:2004 CISPR 22:2005 (Modified) EN55022:2006 CISPR 22 Ed. 5.2 CISPR 22 Ed. 6.0 (2008-09) EN 55022 +A1: 2007 EN 55022:2010	EN 55024: 1998 +A1:2001, +A2:2003 CISPR 24: 1997 +A1:2001, +A2:2002 CISPR 24 Ed. 1.0 EN 55024:2010	EN 61000-6-1 :2007 IEC 61000-6-1 Ed. 2.0 EN 61000-6-1: 2001
EN 61000-6-2:2005 IEC 61000-6-2 Ed. 2.0	EN 61000-6-3 :2007 IEC 61000-6-3 Ed. 2.0 EN 61000-6-3: 2001 + A1 :2004	IEC 61000-6-2 Ed. 2.0 EN 61000-6-2: 2005 IEC 61000-6-2: 2005 EN 61000-6-2: 2001
EN 61326:1997 +A1:1998 + A2:2001 +A3:2003 IEC 61326:1997 +A1:1998 + A2:2000 EN 61326-1 Ed. 1.0 EN 61326-1 Ed. 1.0 EN 61326-1 :2013 IEC 61326-1 Ed. 2.0 (2012-07) IEC 61326:2006	EN 60601-1-2:2001 + A1:2006 IEC 60601-1-2:2001 EN 60601-1-2:2007 IEC 60601-1-2:2007 (Ed. 3.0)	EN 55103-1:1996 EN 55103-2 :1996 EN 55103-1:2005 EN 55103-2:2005
EN 300 386 V.1.3.1 EN 300 386 V.1.3.3 EN 300 386 V.1.4.1	EN 61000-3-3: 1995, +A1:2001 +A2:2005 IEC 61000-3-3: 1994, +A1:2001 +A2:2005 EN 61000-3-3:2008	EN 61000-3-2: 2000 +A2 :2005 IEC 61000-3-2: 2000 (Modified) +A1:2001 +A2:2004 EN 61000-3-2:2006
EN 50130-4: 1995 + A1:1998 + A2:2002 EN 50130-4:2011	ETSI EN 301 489-x ETSI EN 300 220-x	ETSI EN 300 339 Ed. 1

Bkaterding

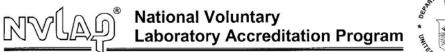
T.B. Ketterling, Nemko ELA Co-ordinator

NLA 3 ED3

2(3)

	Basic Standards	
EN 61000-4-2:1995, +A1:1998, +A2:2000 IEC 61000-4-2:1995, +A1:1998, +A2:2000 EN 61000-4-2 : 2009 EN 61000-4-2 : 2008 (ed. 2) IEC 61000-4-2:2001 (ed. 1.2) EN 61000-4-5:1995, +A1:2001 IEC 61000-4-5:1995, +A1:2000	EN 61000-4-3:2002, +A1:2002 IEC 61000-4-3:2002, +A1:2002 EN 61000-4-3:2006 +A1:2006 HA2:2006 IEC 61000-4-3 (Ed. 3.0) +A1:2007 +A2:2010 EN 61000-4-6:1996, +A1:2001 IEC 61000-4-6:1996, +A1:2000 EN 61000-4-6:1996, +A1:2000	EN 61000-4-4:1995, +A1:2002, +A2:2002 IEC 61000-4-4:1995, +A1:2000, +A2:2001 EN 61000-4-4:2004 IEC 61000-4-4 Ed. 2.0 IEC 61000-4-4 Ed. 2.0 IEC 61000-4-8:1994, +A1:2001 IEC 61000-4-8:1994, +A1:2001
EN 61000-4-5 :2006 IEC 61000-4-5 Ed. 2.0 EN 61000-4-11:2004 IEC 61000-4-11 Ed. 2.0	EN 61000-4-6 : 2009 IEC 61000-4-6 Ed. 2.2 IEC 61000-4-6 :2008	IEC 61000-4-8 Ed. 1.1 IEC 61000-4-8 :2001 IEC 61000-4-8 :2009 EN 61000-4-8 :2010
EN 61000-4-11:1994, +A1:2000 IEC 61000-4-11:1994, +A1:2000		

Bkothering


T.B. Ketterling, Nemko ELA Co-ordinator

3(3)

NLA 3 ED3

NVLAP-01C (REV. 2009-01-28)

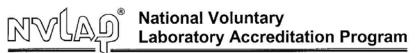
SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

EMC Integrity, Inc. 1736 Vista View Drive Longmont, CO 80504 Mr. Vincent W. Greb Phone: 303-776-7249 Fax: 303-776-7314 E-Mail: vinceg@emcintegrity.com URL: http://www.emcintegrity.com

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2014-10-06

NVLAP Code Designation / Description


Emissions Test Methods

12/100063c	IEC 61000-6-3 (1996), EN 61000-6-3 (2001), A1 (2004): Electromagnetic Compatibility (EMC) - Part 6: Generic standards - Section 3: Emission standard for residential, commercial, and light-industrial environments.
12/610006m	EN 61000-6-4 (2007): Electromagnetic Compatibility (EMC) - Part 6-4: Generic Standards - Emission Standard for Industrial Environments
12/61326da	IEC 61326-1 Ed. 2.0 (2012): Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements
12/CIS11f	AS/NZS CISPR 11 (2002): Industrial, scientific and medical (ISM) radio frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement
12/CIS11g	IEC/CISPR 11, Ed. 4.1 (2004-06): Industrial, scientific and medical (ISM) radio-frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurements
12/CIS11h	AS/NZS CISPR 11 (2004): Industrial, scientific and medical (ISM) radio frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement
12/CIS11i	$IEC/CISPR \ 11, Ed. \ 4.1 \ (2004-06) + A1(2004): \ Industrial, \ scientific \ and \ medical \ (ISM) \ radio frequency equipment - Electromagnetic disturbance \ characteristics - Limits \ and \ methods \ of \ measurement$

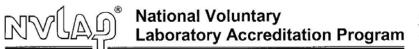
2014-07-01 through 2015-06-30

Effective dates

Page 1 of 11

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2014-10-06


NVLAP Code	Designation / Description
12/CIS11j	EN 55011 (1998) + A1(1999), A2(2002): Industrial, scientific and medical (ISM) radio frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement
12/CIS11k	IEC/CISPR 11 (2003), EN 55011 (1998), A2(2002): Limits and Methods of Measurement of Electromagnetic Disturbance Characteristics of Industrial, Scientific, and Medical Radio-Frequency Equipment
12/CIS11m2	EN 55011 (2009) + A1 (2010): Industrial, scientific and medical (ISM) radio-frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement
12/CIS11p	IEC/CISPR 11 Ed. 5 (2009-05): Industrial, scientific and medical equipment - Radio-frequency disturbance characteristics - Limits and methods of measurement
12/CIS14b1	AS/NZS CISPR 14-1 (2003): Electromagnetic Compatibility - Requirements for household appliances, electric tools and similar apparatus - Part 1: Emission
12/CIS14x	IEC/CISPR 14-1, Ed. 4 (2003): Electromagnetic Compatibility - Requirements for household appliances, electric tools and similar apparatus - Part 1: Emission
12/CIS22	IEC/CISPR 22 (1997) & EN 55022 (1998) + A1(2000): Limits and methods of measurement of radio disturbance characteristics of information technology equipment
12/CIS22a	IEC/CISPR 22 (1993) and EN 55022 (1994): Limits and methods of measurement of radio disturbance characteristics of information technology equipment, Amendment 1 (1995) and Amendment 2 (1996)
12/CIS22a4	IEC/CISPR 22 (1993) & EN 55022 (1994)+A1(1995), A2(1997): Limits and methods of measurement of radio disturbance characteristics of information technology equipment
12/CIS22b	CNS 13438 (1997): Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment
12/CIS22c	IEC/CISPR 22, Fourth Edition (2003-04) & EN 55022 (1998): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement

2014-07-01 through 2015-06-30

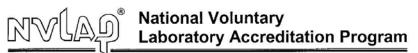
Effective dates

Page 2 of 11

VI М

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2014-10-06


NVLAP Code	Designation / Description
12/CIS22c1	IEC/CISPR 22, Edition 5 (2005) and EN 55022 (1998): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
12/CIS22e3	IEC/CISPR 22, Edition 5 (2005) + A1(2005): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
12/CIS22e4	EN 55022 (1998) + A1(2000) + A2(2003): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
12/CIS22f	CNS 13438 (2006) (up to 6GHz): LImits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment
12/CIS22i	IEC/CISPR 22, Edition 5.2 (2006-03): Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment
12/CIS22j	EN 55022 (2006): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
12/CIS22j1	EN 55022 (2006) + A1 (2007): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
12/CIS22j2	EN 55022:2010: Information technology equipment. Radio disturbance characteristics. Limits and methods of measurement
12/CIS22k	IEC/CISPR 22 (2008-09): Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment
12/CIS32a	CISPR 32, Ed. 1 (2012-01): Electromagnetic compatibility of multimedia equipment - Emission requirements
12/CIS32ba	EN 55032:2012/AC:2013: Electromagnetic compatibility of multimedia equipment. Emission requirements
12/EM02d	IEC 61000-3-2, Edition 2.2 (2004-11): Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current <= 16 A per phase)

2014-07-01 through 2015-06-30

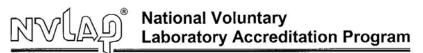
Effective dates

Page 3 of 11

VI М

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2014-10-06


NVLAP Code	Designation / Description
12/EM02k	GB 17625.1 (2003): Electromagnetic compatibility (EMC) - Part 3: Limits - Section 2. Limits for harmonic current emissions (equipment input current <= 16A per phase)
12/EM03b	IEC 61000-3-3, Edition 1.1(2002-03) & EN 61000-3-3, A1(2001): EMC - Part 3-3: Limits - Limitations of voltage changes, voltage flucuations and flicker, in public low-voltage supply-systems, for equipment with rated current <=16 A per phase and not subject to conditional connections
12/EM03g	IEC 61000-3-3, Edition 1.1 (2003) +A2 (2005): EMC Part 3-3: Limits - Limitations of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current <= 16 A per phase and not subject to conditional connections
12/EM12c	IEC 61000-3-12 Ed. 2.0 (2011): Electromagnetic compatibility (EMC) - Part 3-12: Limits - Limits for harmonic currents produced by equipment connected to public low-voltage systems with input current >16 A and = 75 A per phase
12/EM12d	EN 61000-3-12 (2011): Electromagnetic Compatibility (EMC) - PART 3-12: Limits for harmonic currents produced by equipment connected to public low-voltage systems with input current greater than 16A and less than or equal to 75A
12/F18	FCC OST/MP-5 (1986): FCC Methods of Measurement of Radio Noise Emissions for ISM Equipment (cited in FCC Method 47 CFR Part 18 - Industrial, Scientific, and Medical Equipment)
12/FCC15b	ANSI C63.4 (2003) with FCC Method 47 CFR Part 15, Subpart B: Unintentional Radiators
12/FCC15bb	ANSI C63.4 (2009) with FCC Method 47 CFR Part 15, Subpart B: Unintentional Radiators
12/KN11d1	KN11 (Annex 3) with RRA Announce 2008-11 (Dec. 16, 2008): Conformity Assessment Procedure for Electromagnetic Interference; With KN 11 (Annex 3)
12/KN16	Korea RRA Notice No. 2008-11 (Dec. 16, 2008): Conformity Assessment Procedures for Electromagnetic Interference using KN 16-1-1, KN 16-1-2, KN 16-1-3, KN 16-1-4, KN 16-1-5, KN 16-2-1, KN 16-2-2, KN 16-2-3, KN 16-2-4 (2008-05)

2014-07-01 through 2015-06-30

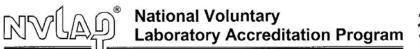
Effective dates

Page 4 of 11

М

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2014-10-06


NVLAP Code	Designation / Description
12/KN22	KN22 with RRL Notice No. 2005-82 (Sept. 29, 2005): RRL Notice No. 2005-82: Technical Requirements for Electromagnetic Interference Annex 8 (KN-22), RRL Notice No. 2005-131: Conformity Assessment Procedures for Electromagnetic Interference
12/KN22e	KN22 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008): Conformity Assessment Procedure for Electromagnetic Interference; With KN 22
12/KN22f	KN22 (Annex 5) with RRA Announce 2010-5 (Dec 24, 2010): Conformity Assessment Procedure for Electromagnetic Interference; With KN 22 (Annex 5)
12/RRA04a	RRA 2014-8 and RRA 2014-37 (June 23, 2014): Technical Requirements and Test Methods for Electromagnetic Interference; K only (See specific Annexes listed on scope)
12/RRA105	RRA Announce 2010-5, K only (December 24, 2010): Conformity Assessment Procedure for Electromagnetic Interference (K only)
12/RRA1118	RRA Public Notification 2011-18, K only (July 5, 2011): Technical Requirements for Electromagnetic Interference (K only)
12/T51	AS/NZS CISPR 22 (2002) and AS/NZS 3548 (1997): Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment
12/T51b1	AS/NZS CISPR 22 (2009): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
12/TCVNa	TCVN 7189:2009 (CISPR 22:2006): Information Technology Equipment-Radio disturbance characteristics - Limits and methods of measurement
12/VCCIe	Agreement of VCCI V-3 (2009.04): Agreement of Voluntary Control Council for Interference by Information Technology Equipment - Technical Requirements: V-3/2009.04 (radiated disturbance above 1 GHz)
12/VCCIg	Agreement of VCCI V-3 (2011.04): Agreement of VCCI Council - Technical Requirements: V-3/2011.04 (including radiated disturbance above 1 GHz)

2014-07-01 through 2015-06-30

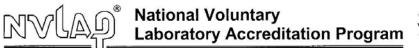
Effective dates

Page 5 of 11

VI М

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2014-10-06


NVLAP Code	Designation / Description		
12/VCCIi	Agreement of VCCI V-3 (2013.04): Agreement of VCCI Council - Technical Requirements: V-3/2013.04 (including radiated disturbance above 1 GHz)		
Immunity Test Methods			
12/610006h	IEC 61000-6-1, 2nd edition (2005-03): Electromagnetic compatibility (EMC) - Part 6: Generic standards - Section 1: Immunity for residential, commercial and light-industrial environments		
12/610006i	IEC 61000-6-2, Edition 2.0 (2005-01): Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments		
12/61326aa	EN 61326-1:2013: Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements		
12/CIS24g	CISPR 24 ed2.0 (2010-08): Information technology equipment - Immunity characteristics - Limits and methods of measurement		
12/CIS24h	EN 55024 (2010): Information technology equipment. Immunity characteristics. Limits and methods of measurement		
12/I01b	IEC 61000-4-2 (2001); EN 61000-4-2 (2001), A2 (2001): Electrostatic Discharge Immunity Test		
12/I01c	EN 61000-4-2 +A1(1998) +A2(2001): Electrostatic Discharge Immunity Test		
12/I01d	IEC 61000-4-2, Ed. 2.0 (2008-12): Electromagnetic compatibility (EMC) - Part 4-2: Testing and measurement techniques - Electrostatic discharge immunity test		
12/I01f	EN 61000-4-2 (2009-05): Electromagnetic compatibility (EMC) - Part 4-2 : Testing and measurement techniques - Electrostatic discharge immunity test		
12/І02Ь	IEC/EN 61000-4-3, Ed. 2.1 (2002), A1 (2002); EN 61000-4-3: Radiated, radio-frequency, electromagnetic field immunity test		
12/I02c	IEC 61000-4-3 (1995), A1(1998), A2(2000): Radiated, radio-frequency, electromagnetic field immunity test		

2014-07-01 through 2015-06-30

Effective dates

Page 6 of 11

М

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2014-10-06

NVLAP Code	Designation / Description
12/I02f	${ m EN}$ 61000-4-3 (2002) + A1(2002): Radiated, radio-frequency, electromagnetic field immunity test
12/I02ggg	IEC 61000-4-3, Ed. 3.0 (2006-02) + A1 (2007) + A2 (2010): Electromagnetic compatibility (EMC) - Part 4-3: Testing measurement techniques - Radiated, radio-frequency, electromagnetic field immunity test
12/I02hhh	EN 61000-4-3 (2006) +A1 (2008) + A2 (2010): Electromagnetic compatibility (EMC). Testing and measurement techniques. Radiated, radio- Frequency, electromagnetic field immunity test
12/I03c	IEC 61000-4-4, Ed. 2.0 (2004-07): Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical fast transient/burst immunity test
12/I03e	EN 61000-4-4 (2004): Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical fast transient/burst immunity test
12/I04aa	IEC 61000-4-5, Ed. 2.0 (2005-11); EN 61000-4-5: Electromagnetic Compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test
12/I04b	IEC 61000-4-5 (2001), A1(2000); EN 61000-4-5(2001), A1(2000): Surge Immunity Test
12/I04d	BS EN 61000-4-5 (2006): Electromagnetic compatibility (EMC). Testing and measurement techniques. Surge immunity test
12/I05d	IEC 61000-4-6, Ed. 2.1 (2004); EN 61000-4-6: Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields
12/I05e	EN 61000-4-6 (1996) + A1 (2001): Immunity to Conducted Disturbances, Induced by Radio Frequency Fields
12/I05f1	IEC 61000-4-6 Ed. 3.0 (2008): Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields

2014-07-01 through 2015-06-30

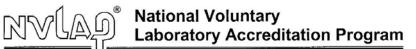
Effective dates

Page 7 of 11

М

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2014-10-06


NVLAP Code	Designation / Description
12/I05j	EN 61000-4-6 (2009): Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields
12/I06b	IEC 61000-4-8 (2001), A1(2000); EN 61000-4-8 (2001), A1(2000): Power Frequency Magnetic Field Immunity Test
12/I06c	EN 61000-4-8 (1993) + A1 (2001): Power Frequency Magnetic Field Immunity Test
12/I06e	IEC 61000-4-8 (2009): Electromagnetic compatibility (EMC) - Part 4-8: Testing and measurement techniques - Power frequency magnetic field immunity test
12/I06f	EN 61000-4-8:2010: Electromagnetic compatibility (EMC). Testing and measurement techniques. Power frequency magnetic field immunity test
12/I07c	IEC 61000-4-11, Ed. 2 (2004-03) & EN 61000-4-11: Electromagnetic compatibility (EMC) - Part 4-11: Testing and measurement techniques - Voltage dips, short interruptions and voltage variations immunity tests
12/I07e	EN 61000-4-11 (1994), A1 (2001): Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests
12/I07f	EN 61000-4-11 (2004): Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests
12/KN11a	KN 61000-4-11 with RRL Notice No. 2005-130 (Dec 27, 2005): Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests
12/KN11f	KN 61000-4-11 (2008-5); RRL Notice No. 2008-4 (May 20, 2008): Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests
12/KN11h	KN 61000-4-11 (Annex 1-7) RRA Announce 2010-6 (Dec.24, 2010): Conformity Assessment Procedure for EMS (Voltage Dips, Short Interruptions and Voltage Variations Immunity tests)

2014-07-01 through 2015-06-30

Effective dates

Page 8 of 11

М

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2014-10-06

NVLAP Code	Designation / Description
12/KN24	$\rm KN24$ (December 2005) with RRL Notice No. 2005-83: Information Technology Equipment - immunity characteristics - limits and methods of measurements
12/KN24d	KN 24 (2008-5) with RRL Notice No. 2008-4 (May 20, 2008): Information Technology Equipment - immunity charateristics - limits and methods of measurements
12/KN24e	KN 24 (Annex 5) with RRA Announce 2010-6 (Dec. 24, 2010): Conformity Assessment Procedure for EMS (Information technology equipment - Immunity characteristics - Limits and methods of measurement)
12/KN2a	KN 61000-4-2 with RRL Notice No. 2005-130 (Dec. 27, 2005): Electrostatic Discharge Immunity Test
12/KN2c	KN 61000-4-2 (2008-5); RRL Notice No. 2008-4 (May 20, 2008): Electrostatic Discharge Immunity Test
12/KN2e	KN 61000-4-2 (Annex 1-1) RRA Announce 2010-6 (Dec. 24, 2010): Conformity Assessment Procedure for EMS (Electrostatic Discharge Immunity Test)
12/KN3a	KN 61000-4-3 with RRL Notice No. 2005-130 (Dec. 27, 2005): Radiated, radio-frequency, electromagnetic field immunity test
12/KN3c	KN 61000-4-3 (2008-5); RRL Notice No. 2008-4 (May 20, 2008): Radiated, radio-frequency, electromagnetic field immunity test
12/KN3e	KN 61000-4-3 (Annex 1-2) RRA Announce 2010-6 (Dec. 24, 2010): Radiated, radio-frequency, electromagnetic field immunity test
12/KN4a	KN 61000-4-4 with RRL Notice No. 2005-130 (Dec. 27, 2005): Electromagnetic compatibility (EMC): Testing and measurement techniques - Electrical Fast Transient/Burst Immun
12/KN4e	KN 61000-4-4 (2008-5); RRL Notice No. 2008-5 (May 20, 2008): Electromagnetic compatibility (EMC): Testing and measurement techniques - Electrical Fast Transient/Burst Immunity Test

2014-07-01 through 2015-06-30

Effective dates

Page 9 of 11

М

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2014-10-06


NVLAP Code	Designation / Description
12/KN4e	KN 61000-4-4 (Annex 1-3) RRA Announce 2010-6 (Dec. 24, 2010): Electromagnetic compatibility (EMC): Testing and measurement techniques - Electrical Fast Transient/Burst Immunity Test
12/KN5a	KN 61000-4-5 with RRL Notice No. 2005-130 (Dec. 27, 2005): Surge Immunity Test
12/KN5c	KN 61000-4-5 (2008-5); RRL Notice No. 2008-4 (May 20, 2008): Surge Immunity Test
12/KN5e	KN 61000-4-5 (Annex 1-4) RRA Announce 2010-6 (Dec. 24, 2010): Conformity Assessment Procedure for EMS (Surge Immunity Test)
12/KN6a	KN 61000-4-6 with RRL Notice No. 2005-130 (Dec. 27, 2005): Electromagnetic compatibility (EMC): Testing and measurement techniques - Immunity to conducted disturbances,
12/KN6c	KN 61000-4-6 (2008-5); RRL Notice No. 2008-4 (May 20, 2008): Electromagnetic compatibility (EMC): Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields
12/KN6e	KN 61000-4-6 (Annex 1-5) RRA Announce 2010-6 (Dec. 24, 2010): Electromagnetic compatibility (EMC): Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields
12/KN8a	KN 61000-4-8 with RRL Notice No. 2005-130 (Dec. 27, 2005): Power Frequency Magnetic Field Immunity Test
12/KN8c	KN 61000-4-8 (2008-5); RRL Notice No. 2008-4 (May 20, 2008): Power Frequency Magnetic Field Immunity Test
12/KN8e	KN 61000-4-8 (Annex 1-6) RRA Announce 2010-6 (Dec. 24, 2010): Conformity Assessment Procedure for EMS (Power Frequency Magnetic Field Immunity Test)
12/RRA04b	RRA 2014-09 and RRA 2014-38 (June 23, 2014) K only: Technical Requirements and Test Methods for Electromagnetic Susceptibility; Korean only (See specific annexes listed on scope)

2014-07-01 through 2015-06-30

Effective dates

Page 10 of 11

М

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2014-10-06

NVLAP Code	Designation / Description	
12/RRA106	RRA Public Notification 2010-6, December 24, 2010 (K only): Conformity Assessment Procdure for Electromagneitc Susceptibility (K only)	
12/RRA1117	RRA Public Notification 2011-17, K only (July 5, 2011): Technical Requirements for Electromagnetic Susceptibility, K only	
Product Safety Test Methods		
12/60601ab	IEC 60601-1-2, Ed. 3.0 (2007): Medical electrical equipment - Part 1-2: General requirements for safety - Collateral standard: Electromagnetic compatibility - Requirements and tests	
12/60601ac	KN 60601-1-2 (2008-5); RRL Notice No. 2008-4 (May 20, 2008): Medical electrical equipment - Part 1-2: general requirements for safety - collateral standard: electromagnetic compatibility - requirements and tests	
12/60601h1	EN 60601-1-2 (2007): Medical electrical equipment - Part 1-2: General requirements for safety - Collateral standard: EMC - Requirements and tests	
MIL-STD-462 : Conducted Emissions		
12/A20	MIL-STD-461 Version F Method CE102	
12/A21	MIL-STD-461 Version F Method CE106	
MIL-STD-462 : Radiated Emissions		
12/D11	MIL-STD-461 Version F Method RE102	
12/D12	MIL-STD-461 Version F Method RE103	
MIL STD 462 · Dadiated Suscentibility		

MIL-STD-462 : Radiated Susceptibility

12/E16 MIL-STD-461 Version F Method RS103

2014-07-01 through 2015-06-30

Effective dates

Page 11 of 11

END OF REPORT