

Test Report of Radiated and Conducted Emissions Testing Performed on ClearCast Precinct Tabulator

Issue Date: 24 September 2018

Prepared for: **Pro V&V**

700 Boulevard South

Suite 102

Huntsville, AL 35802

Prepared by: National Technical Systems

NTS Longmont

1736 Vista View Drive

Longmont, Colorado 80504

This report and the information contained herein represents the results of testing of only those articles/products identified in this document and selected by the client. The tests were performed to specifications and/or procedures approved by the client. National Technical Systems ("NTS") makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it present any statement whatsoever as to the merchantability or fitness of the test article or similar products for a particular purpose. This document shall not be reproduced except in full without written approval from NTS.

SIGNATURES

Prepared by:		Date:	24 September 2018
	Technical Writer, Greg Gagne		
Reviewed by:	Technical Reviewer, John Tate	Date:	26 September 2018

REVISIONS

Revision	Reason for Revision	Date
NR	Initial Release	

Table of Contents

1.0	ADMINISTRATIVE DATA	6
1.1	PURPOSE OF TESTS	6
1.2	DESCRIPTION OF TEST ITEM	6
1.3	MANUFACTURER	6
1.4	REFERENCE DOCUMENTS	6
1.5	QUANTITY OF ITEMS TESTED	6
1.6	SECURITY CLASSIFICATION	7
1.7	TESTS CONDUCTED BY	7
1.8	DISPOSITION OF TEST ITEMS	7
1.9	TEST ENVIRONMENT	7
1.9.1	RADIATED EMISSIONS TEST SITE	7
1.9.2	CONDUCTED EMISSIONS TEST SITE	8
1.9.3	MEASUREMENT UNCERTAINTY	8
1.10	TEST APPARATUS	g
1.11	SOURCE INSPECTION	9
1.12	PURCHASE ORDER NUMBER	9
2.0	TEST RESULTS SUMMARY	. 10
3.0	RADIATED EMISSIONS TEST	. 11
3.1	REFERENCES	. 11
3.2	SERIAL NUMBERS	. 11
3.3	TEST PROCEDURE	. 11
3.4	SPECIAL CONFIGURATIONS	. 11
3.5	TEST RESULTS	. 11
4.0	CONDUCTED EMISSIONS TEST	. 12
4.1	REFERENCES	. 12

4.2	SERIAL NUMBERS	12
4.3	TEST PROCEDURE	12
4.4	SPECIAL CONFIGURATIONS	12
4.5	TEST RESULTS	12
APPE	NDIX A: RADIATED EMISSIONS TEST DATA	13
APPE	NDIX B: CONDUCTED EMISSIONS TEST DATA	21
APPE	NDIX C: PRODUCT DATA SHEET	31
APPE	NDIX D: TEST LOG	35
APPE	NDIX E: LABORATORY ACCREDITATIONS	44
END (OF REPORT	50

1.0 ADMINISTRATIVE DATA

1.1 PURPOSE OF TESTS

This report documents the test efforts performed on the ClearCast Precinct Tabulator to verify compliance to the Class B limits of CFR Title 47, FCC Part 15 and ICES-003. FCC Part 15 is the U.S. document which governs electromagnetic emissions from computing devices for conducted and radiated emissions, respectively. This was a formal qualification test and was conducted on 06 September 2018.

The emission limits applied to the product tested are defined in EN 55011, which is the product family standard for Industrial, Scientific and Medical (ISM) equipment. The UUT was set up as specified in CISPR 16.

The normative references of this standard define the test methods used for the emissions testing. These standards are contained in Table 1-1.

Table 1-1: Standards Table

CFR Title 47 FCC Part 15	ICES-003, Issue 6, 2016
ANSI C63.4: 2014	

1.2 DESCRIPTION OF TEST ITEM

The Unit Under Test (UUT) is a precinct tabulator, designed for use in voting during elections.

1.3 MANUFACTURER

Clear Ballot Group 700 Boulevard South Suite 102 Huntsville, AL 35802

1.4 REFERENCE DOCUMENTS

- 1. Pro V&V SOW
- 2. ISO 17025:2005

1.5 QUANTITY OF ITEMS TESTED

Quantity	Test Item Description	Model Number	Serial Number
1	ClearCast Precinct Tabulator	Model 2, Version A	Unit 1

1.6 <u>SECURITY CLASSIFICATION</u>

Unclassified

1.7 TESTS CONDUCTED BY

National Technical Systems NTS Longmont 1736 Vista View Drive Longmont, Colorado 80504

1.8 <u>DISPOSITION OF TEST ITEMS</u>

Returned to:

Pro V&V 700 Boulevard South Suite 102 Huntsville, AL 35802

1.9 TEST ENVIRONMENT

1.9.1 Radiated Emissions Test Site

Radiated emissions testing was performed at a distance of 10-meters in a semi-anechoic 10-meter chamber. This chamber is calibrated annually and meets the volumetric site attenuation requirements of CISPR 16 at a distance of 10 meters. For measurements from 30 MHz to 1 GHz, a biconilog antenna is used in conjunction with a high-gain, low-noise preamplifier. This is connected to a spectrum analyzer with a Quasi-Peak (QP) Adapter, via an RF Preselector.

Radiated emissions testing is broken into two parts: pre-scan and QP/maximization. Pre-scanning a product from 30 MHz to 1 GHz consists of measuring peak emissions from eight radials (every 45 degrees), at four antenna heights (1 m, 2 m, 3 m and 4 m) for both antenna polarities. Data is recorded in a graph showing amplitude vs. frequency of the emissions, and frequencies for QP/maximization are chosen based on this graph. The procedure for maximizing emissions is as follows:

- 1. The analyzer is tuned to the frequency associated with the emissions having the least margin.
- 2. The turntable and antenna mast are moved to the location where the maximum emission was measured during the pre-scan.
- 3. Both are then oriented such that the maximum emission is obtained.
- 4. Cables on the UUT are manually manipulated to achieve the maximum emission.

- 5. The turntable and antenna mast are then re-adjusted to ensure a maximum reading.
- 6. If the signal in question is less than 1 GHz, quasi-peak detection is performed on the signal for a minimum of 10 seconds. For signals greater than 1 GHz, video averaging is performed.
- 7. Turntable/antenna mast maximization and QP detection are performed on all other signals within 6 dB of the limit. In the event that there are not six signals within 6 dB of the limit, the highest six signals are maximized. This ensures that a minimum of six signals are maximized and appear in the final data table.

In the event that emission measurements are required above 1 GHz, the antenna is changed to a double-ridged horn equipped with a preamplifier and run directly into the spectrum analyzer. The QP adapter and RF preselector are not used above 1 GHz.

Pre-scanning a product from 1-18 GHz is performed similarly, except that 16 radials (every 22.5 degrees) and three antenna heights (1 m, 1.5 m and 2 m) are used. A similar maximization process is used as for the lower frequency range, except that average measurements are performed, rather than QP measurements.

1.9.2 Conducted Emissions Test Site

Conducted emissions testing was performed on a 10' by 10' ground plane, which is bonded to the wall of the 10-meter chamber, using its wall as the vertical coupling plane. Line impedance stabilization networks (LISNs) was inserted in series with both the UUT and the support equipment. The LISNs used were standard 50 $\Omega/50~\mu H$ LISNs which complied with the requirements of CISPR 16. These LISNs are calibrated annually for both complex impedance and insertion loss. Measurement equipment used was a spectrum analyzer with a QP adapter. In addition, a transient limiter and a high-pass filter are used to protect the front-end of the receiver from transients and low-frequency noise, respectively.

1.9.3 Measurement Uncertainty

The measurement uncertainty for NTS's emissions test facility complies with the requirements defined in CISPR 16. The complete calculations of NTS's measurement uncertainty is contained in an NTS memo, which is available upon request. However, a summary of NTS's measurement uncertainty is given in Table 2-1.

Table 1-2: Measurement Uncertainty

Test	Requirement	Actual
Conducted Emissions	3.60 dB	3.04 dB
Radiated Emissions – Horizontal Polarity	5.20 dB	4.67 dB
Radiated Emissions – Vertical Polarity	5.20 dB	5.01 dB

1.10 TEST APPARATUS

The instrumentation used in the performance of these tests is periodically calibrated and standardized within manufacturer's rated accuracies and are traceable to the National Institute of Standards and Technology. The calibration procedures and practices are in accordance with ISO 17025:2005. Certification of calibration is on file subject to inspection by authorized personnel.

1.11 SOURCE INSPECTION

NTS QA

1.12 PURCHASE ORDER NUMBER

2018-010

2.0 TEST RESULTS SUMMARY

Table 2-1: Summary of Test Results

Test	Specification	Test Dates	Results
Radiated Emissions	CFR Title 47, FCC Part 15	06 September 2018	Complies
Conducted Emissions	CFR Title 47, FCC Part 15	06 September 2018	Complies

3.0 RADIATED EMISSIONS TEST

3.1 <u>REFERENCES</u>

CFR Title 47, FCC Part 15

3.2 SERIAL NUMBERS

Table 3-1: Serial Numbers

Unit 1	

3.3 <u>TEST PROCEDURE</u>

The UUT was set up for Radiated Emissions Testing in accordance with CFR Title 47, FCC Parts 15 and tested to Class B limits specified in CFR Title 47, FCC Parts 15.107 and 15.109. The UUT was set up as specified in ANSI C63.4: 2014.

Radiated electric field emissions were measured on the UUT over the frequency range from 30 MHz to 1 GHz. The UUT was powered by 120 VAC/60 Hz, configured in its normal operating mode, and exercised continually during testing. Cables were oriented such that the maximum emission was achieved and quasipeak detection was performed on all signals (minimum of six) used in the final data table

3.4 <u>SPECIAL CONFIGURATIONS</u>

See Test Log, "Modifications Required for Compliance" (Page 42)

3.5 TEST RESULTS

Radiated Emissions Test Data is presented in Appendix A.

Test Input Voltage	Test Result	Margin dB	Frequency MHz
120 VAC / 60 Hz	Complies	2.21	200.333

4.0 CONDUCTED EMISSIONS TEST

4.1 <u>REFERENCES</u>

CFR Title 47, FCC Part 15

4.2 SERIAL NUMBERS

Table 4-1: Serial Numbers

Unit 1	

4.3 <u>TEST PROCEDURE</u>

The UUT was set up for Radiated Emissions Testing in accordance with CFR Title 47, FCC Parts 15 and tested to Class B limits specified in CFR Title 47, FCC Parts 15.107 and 15.109. The UUT was set up as specified in ANSI C63.4: 2014.

Conducted emissions were measured on the AC power input of the UUT over the frequency range from 150 kHz to 30 MHz. With the UUT configured in its normal operating mode, testing was performed with UUT powered from 120 VAC/60 Hz. The input power to the UUT was run through a standard 50 Ω /50 μ H line impedance stabilization network (LISN) which complied with the requirements of CISPR 16. Emissions were compared to both quasi-peak (QP) and average limits, with QP detection and averaging performed on the six highest signals.

4.4 SPECIAL CONFIGURATIONS

N/A

4.5 <u>TEST RESULTS</u>

Conducted Emissions Test Data is presented in Appendix B.

Test Input Voltage	Test Result	Margin dB	Frequency MHz
120 VAC / 60 Hz	Complies	16.89	0.165

APPENDIX A: Radiated Emissions Test Data

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V (client) Project Number: PR085361 Customer Representative: Test Area: 10m2 Stephen Han Model: ClearCast (Model 2, Version A) S/N: Unit 1 Standard Referenced: FCC Part 15 Date: September 6, 2018 24°C Humidity: 47% 845mb Temperature: Pressure: Input Voltage: 120Vac/60Hz Configuration of Unit: Scanning ballots Test Engineer: Kevin Johnson

PR085361-11-RE.doc FR0100

Туре	Frequency (MHz)	Level (dBuV)	Transducer (dB/m)	Gain / Loss (dB)	Final (dBuV/m)	Azm(deg)/Pol/Hgt(m)	Margin: FCC Class B QP (dB)
QP	668.251	33.2	23.8	-24.0	33.1	153/V-Pole/1.88	2.46
QP	200.333	41.9	16.6	-27.6	30.8	271/V-Pole/1.00	2.21
QP	222.750	44.7	14.9	-27.5	32.0	172/V-Pole/1.00	3.50
QP	394.652	38.5	19.4	-26.4	31.5	328/H-Pole/1.79	4.05
QP	128.262	38.8	18.2	-28.5	28.5	148/V-Pole/1.77	4.57
QP	288.942	40.5	17.4	-27.1	30.8	348/H-Pole/2.70	4.74
QP	38.242	34.5	19.1	-29.2	24.4	112/V-Pole/1.01	5.14
QP	161.318	35.7	16.3	-28.0	24.0	180/V-Pole/1.37	9.04

The highest emission measured was at 200.333 MHz, which was 2.21 dB below the limit.

- > "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
 - PK = Peak Measurement: RBW is 120kHz, VBW is 3 MHz
 - QP = Quasi-Peak Measurement: RBW is 120kHz, VBW is 3 MHz, and QP Detection is ENABLED
 - AV = Video Average Measurement: RBW is 1 MHz, VBW is 10 Hz
- ➤ The "field strength" (FS) emissions level is attained by adding the received amplitude measured (RA), Antenna factor (AF), and cable factor (CF) minus the amplifier gain (AG). FS = RA + AF + CF AG .Final measurements are made with the Azimuth, Polarity, Height, and EUT Cables positioned for maximum radiation. If applicable, cables positions are noted in the test log. (Sample Calculation: 49.6 dBuV + 11.4 dB/m 28.8 dB (CF/AG) = 32.2 dBuV/m. Important Note: This is a sample calculation only for the purpose of demonstration, and does not reflect data in this report.)
- The "Azm/Pol/Hgt" indicates the turn-table azimuth, the antenna polarity, and the antenna height where the maximum emissions level was measured.
- > The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.
- The PRESCAN is a peak measurement and is performed with the RBW set to 120 kHz, VBW set to 3 MHz (30 MHz to 1 GHz), and the RBW set to 1 MHz, VBW set to 100 kHz (> 1 GHz)

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	10m2
Model:	ClearCast (Model 2, Version A)	S/N:	Unit 1
Standard Referenced:	FCC Part 15	Date:	September 6, 2018
PR085361-11-RE.doc			FR0100

Figure A1: Radiated Emissions Prescan, 30MHz to 1000MHz, Peak Measurements at 10m Distance

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V (client) Project Number: PR085361

Customer Representative: Stephen Han Test Area: 10m2

Model: ClearCast (Model 2, Version A) S/N: Unit 1

Standard Referenced: FCC Part 15 Date: September 6, 2018

PR085361-11-RE.doc FR0100

Figure A3: Radiated Emissions Test Setup - Front

Radiated Emissions, FCC Part 15

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V (client) Project Number: PR085361

Customer Representative: Stephen Han Test Area: 10m2

Model: ClearCast (Model 2, Version A) S/N: Unit 1

Standard Referenced: FCC Part 15 Date: September 6, 2018

PR085361-11-RE.doc

Figure A4: Radiated Emissions Test Setup - Right

Radiated Emissions, FCC Part 15

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V (client) Project Number: PR085361

Customer Representative: Stephen Han Test Area: 10m2

Model: ClearCast (Model 2, Version A) S/N: Unit 1

Standard Referenced: FCC Part 15 Date: September 6, 2018

PR085361-11-RE.doc

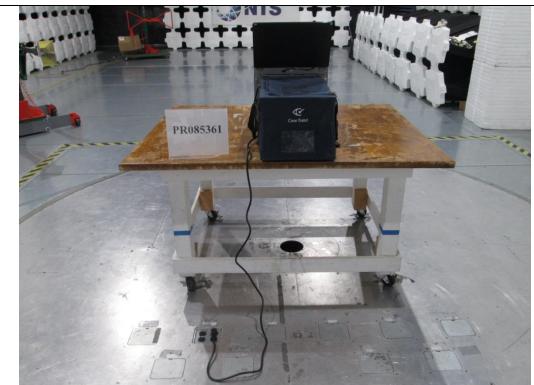


Figure A5: Radiated Emissions Test Setup - Back

Radiated Emissions, FCC Part 15

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V (client) Project Number: PR085361

Customer Representative: Stephen Han Test Area: 10m2

Model: ClearCast (Model 2, Version A) S/N: Unit 1

Standard Referenced: FCC Part 15 Date: September 6, 2018

PR085361-11-RE.doc

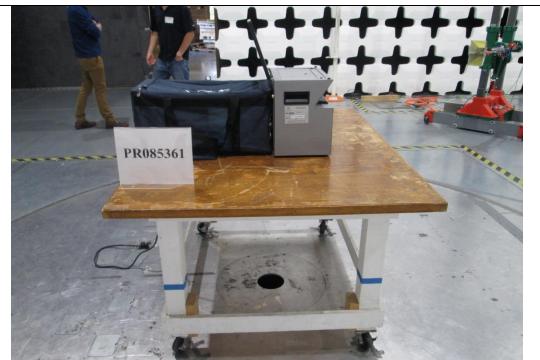


Figure A6: Radiated Emissions Test Setup - Left

Clear Ballot Group (manufacturer) Pro V&V (client) Manufacturer: Project Number: PR085361 Stephen Han Test Area: 10m2 Customer Representative: Model: ClearCast (Model 2, Version A) S/N: Unit 1 Standard Referenced: FCC Part 15 Date: September 6, 2018 PR085361-11-RE.doc FR0100

Test Equipment List

ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1339	Hewlett Packard	8566B	2937A06103	Spectrum Analyzer with 2542A11546	09/09/2017	09/09/2018
1340	Hewlett Packard	8566B	2542A11546	Spectrum Analyzer Display	09/09/2017	09/09/2018
1341	Hewlett Packard	85650A	2811A01351	Quasi-Peak Adapter	08/09/2017	09/09/2018
1345	Hewlett Packard	85685A	2901A00865	RF Preselector	10/15/2017	10/15/2018
1396	CIR Enterprises	10m Chamber #2	002	10m Chamber with 4m turntable	03/29/2018	03/29/2020
1410	Sunol Sciences	SC110V	021611-1	System Controller 10meter #2	NA	NA
1492	Fluke	87/5 Multimeter	23350032	True RMS Multimeter	05/08/2018	05/08/2019
1586	EXTECH Instruments	445715	NA	Hygro-Thermometer	01/25/2018	01/25/2019
1592	EMCI	CEAS	V4.1.2	Commercial Emissions Automation Software - 10M # 2	NA	NA

APPENDIX B: Conducted Emissions Test Data

Conducted Emissions, FCC Part 15

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V (client) Project Number: PR085361

Customer Representative: Stephen Han Test Area: 10m2

Model: ClearCast (Model 2, Version A) S/N: Unit 1

Standard Referenced: FCC Part 15 Date: September 6, 2018

Temperature: 24°C Humidity: 47% Pressure: 847mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Scanning ballots

Test Engineer: Kevin Johnson

PR085361-11-CE.doc FR0100

	61-11-CE.doc		m ,	a			1. 1. Dag a	FR0100
Type	Frequency (MHz)	Level (dBuV)	Transducer (dB)	Gain / Loss (dB)	Final (dBuV)	Test Point	Margin: FCC Class B AV (dB)	Margin: FCC Class B QP (dB)
AV	0.159	17.8	-1.4	16.1	32.5	Line 1	23.21	-
QP	0.159	32.4	-1.4	16.1	47.1	Line 1	-	18.61
AV	0.173	15.1	-1.3	16.1	29.9	Line 1	25.44	-
QP	0.173	29.1	-1.3	16.1	43.9	Line 1	-	21.44
AV	0.201	12.1	-1.1	16.1	27.1	Line 1	27.44	-
QP	0.201	26.0	-1.1	16.1	41.0	Line 1	-	23.55
AV	0.223	10.3	-1.0	16.1	25.5	Line 1	28.43	-
QP	0.223	24.9	-1.0	16.1	40.0	Line 1	-	23.91
AV	13.006	11.3	-0.3	15.8	26.8	Line 1	23.23	-
QP	13.006	22.0	-0.3	15.8	37.5	Line 1	-	22.50
AV	16.345	9.2	-0.3	15.7	24.6	Line 1	25.42	-
QP	16.345	17.5	-0.3	15.7	32.9	Line 1	-	27.12
AV	0.165	18.9	-1.3	16.1	33.6	Neutral	21.97	-
QP	0.165	33.9	-1.3	16.1	48.7	Neutral	-	16.89
AV	0.191	13.7	-1.2	16.1	28.6	Neutral	26.24	-
QP	0.191	28.6	-1.2	16.1	43.5	Neutral	-	21.33
AV	0.209	11.8	-1.1	16.1	26.8	Neutral	27.53	-
QP	0.209	25.9	-1.1	16.1	40.9	Neutral	-	23.37
AV	0.227	9.7	-1.0	16.1	24.8	Neutral	29.02	-
QP	0.227	22.3	-1.0	16.1	37.5	Neutral	-	26.33
AV	13.029	12.2	-0.3	15.8	27.7	Neutral	22.29	-
QP	13.029	20.3	-0.3	15.8	35.8	Neutral	-	24.24
AV	16.888	8.7	-0.3	15.8	24.1	Neutral	25.91	-
QP	16.888	12.8	-0.3	15.8	28.2	Neutral	-	31.76

The highest emission measured was at 0.165 MHz, which was 16.89 dB below the limit.

- "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
 - PK = Peak Measurement: RBW is 9 kHz, VBW is 3 MHz
 - QP = Quasi-Peak Measurement: RBW is 9 kHz, VBW is 3 MHz, and QP Detection is ENABLED
 - AV = Video Average Measurement: RBW is 9 kHz, VBW is 10 Hz
- ➤ The "field strength" (FS) emissions level is attained by adding the received amplitude measured (RA), Antenna factor (AF), and cable factor (CF) minus the amplifier gain (AG). FS = RA + AF + CF AG .Final measurements are made with the Azimuth, Polarity, Height, and EUT Cables positioned for maximum radiation. If applicable, cables positions are noted in the test log. (Sample Calculation: 49.6 dBuV + 11.4 dB/m 28.8 dB (CF/AG) = 32.2 dBuV/m. Important Note: This is a sample calculation only for the purpose of demonstration, and does not reflect data in this report.)
- > The "TestPoint" indicates which AC or DC input power line or which I/O cable the measurement was made on.
- The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.
- The PRESCAN is a peak measurement and is performed with the RBW set to 9 kHz, and the VBW set to 3 MHz

Conducted Emissions, FCC Part 15

Clear Ballot Group (manufacturer) Pro V&V (client) Manufacturer: Project Number: PR085361 Customer Representative: Stephen Han Test Area: 10m2 Model: ClearCast (Model 2, Version A) S/N: Unit 1 Standard Referenced: FCC Part 15 Date: September 6, 2018

PR085361-11-CE.doc

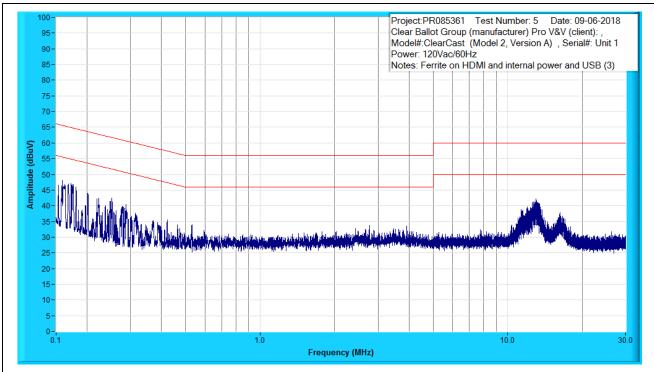


Figure B1: Conducted Emissions Prescan, Line 1, 0.150MHz to 30MHz, Peak Measurements

Conducted Emissions, FCC Part 15

Clear Ballot Group (manufacturer) Pro V&V (client) Manufacturer: PR085361 Project Number: Customer Representative: Test Area: 10m2 Stephen Han ClearCast (Model 2, Version A) Unit 1 Model: Standard Referenced: FCC Part 15 Date: September 6, 2018

PR085361-11-CE.doc

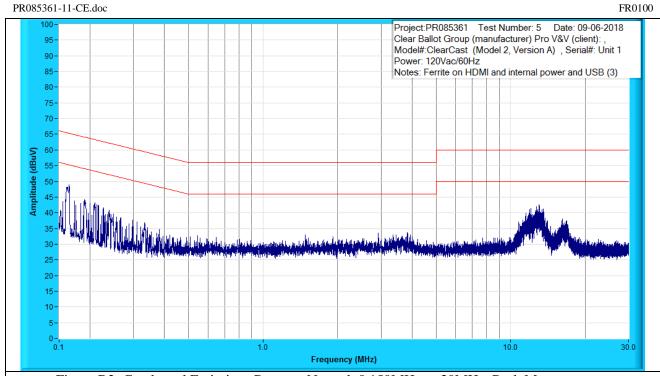


Figure B2: Conducted Emissions Prescan, Neutral, 0.150MHz to 30MHz, Peak Measurements

Conducted Emissions, FCC Part 15

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V (client) Project Number: PR085361

Customer Representative: Stephen Han Test Area: 10m2

Model:ClearCast (Model 2, Version A)S/N:Unit 1Standard Referenced:FCC Part 15Date:September 6, 2018

PR085361-11-CE.doc FR0100

Figure B3: Conducted Emissions Test Setup – Front Side

Conducted Emissions, FCC Part 15

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V (client) Project Number: PR085361

Customer Representative: Stephen Han Test Area: 10m2

Model: ClearCast (Model 2, Version A) Unit 1

Standard Referenced: FCC Part 15 Date: September 6, 2018

PR085361-11-CE.doc

Figure B4: Conducted Emissions Test Setup – Right Side

Conducted Emissions, FCC Part 15

 Manufacturer:
 Clear Ballot Group (manufacturer) Pro V&V (client)
 Project Number:
 PR085361

 Customer Representative:
 Stephen Han
 Test Area:
 10m2

Model: ClearCast (Model 2, Version A) S/N: Unit 1

Standard Referenced: FCC Part 15 Date: September 6, 2018

PR085361-11-CE.doc

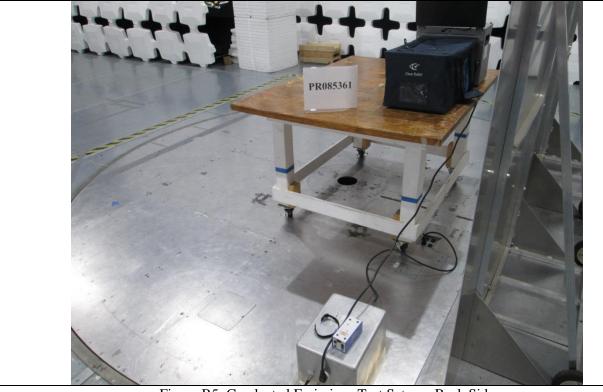


Figure B5: Conducted Emissions Test Setup – Back Side

Conducted Emissions, FCC Part 15

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V (client) Project Number: PR085361

Customer Representative: Stephen Han Test Area: 10m2

Model:ClearCast (Model 2, Version A)S/N:Unit 1Referenced:FCC Part 15Date:September 6, 2018

Standard Referenced: FCC Part 15 Date: September 6, 2018

PR085361-11-CE.doc FR0100

Figure B6: Conducted Emissions Test Setup – Left Side

Conducted Emissions, FCC Part 15

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	10m2
Model:	ClearCast (Model 2, Version A)	S/N:	Unit 1
Standard Referenced:	FCC Part 15	Date:	September 6, 2018
PR085361-11-CE.doc		•	FR0100

Test Equipment List

ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1201	Agilent Technology	11947A	3107A03805	Transient Limiter, 9 kHz to 200 MHz	11/27/2017	11/27/2018
1339	Hewlett Packard	8566B	2937A06103	Spectrum Analyzer with 2542A11546	09/09/2017	09/09/2018
1340	Hewlett Packard	8566B	2542A11546	Spectrum Analyzer Display	09/09/2017	09/09/2018
1341	Hewlett Packard	85650A	2811A01351	Quasi-Peak Adapter	08/09/2017	09/09/2018
1345	Hewlett Packard	85685A	2901A00865	RF Preselector	10/15/2017	10/15/2018
1396	CIR Enterprises	10m Chamber #2	002	10m Chamber with 4m turntable	03/29/2018	03/29/2020
1492	Fluke	87/5 Multimeter	23350032	True RMS Multimeter	05/08/2018	05/08/2019
1556	EMCI	EMCI, 2 Phase LISN	10	150 kHz to 30 MHz, 277 Vac/400 Vdc, 50/60 Hz, 16 A	02/22/2018	02/22/2019
1586	EXTECH Instruments	445715	NA	Hygro-Thermometer	01/25/2018	01/25/2019
1590	Solor Electronics Company	7930-100	7930160101	High Pass Filter	02/07/2018	02/07/2019
1592	EMCI	CEAS	V4.1.2	Commercial Emissions Automation Software - 10M # 2	NA	NA

APPENDIX C: Product Data Sheet

1.0 Client Information

Client Information	
Manufacturer Name	Clear Ballot Group (manufacturer) Pro V&V (client)
Address	700 Boulevard South Suite 102
City	Huntsville
State	AL
Zip Code	35802
Client Representative	Stephen Han
Title	Sr. Project Engineer
Phone	256-713-1111
Fax	256-713-1112
Email	stephen.han@provandv.com

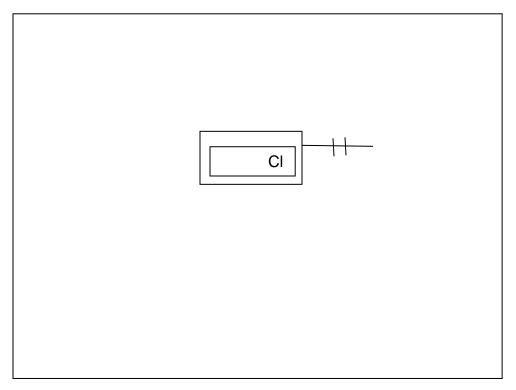
2.0 Product Information - General

Product Inform	nation							
Product Name (a	s it should appear on test report)	ClearCast						
Model Number (of UUT to be tested)	ClearCa	ast					
Functional descr	iption of product (what is it, what does it	Precinc	t Tabula	itor				
do, etc.)								
List all modes of	1	Normal						
Can modes be or	perated simultaneously? If so, explain.	No						
	ill be used for testing?	Normal						
Product type (IT	, Medical, Scientific, Industrial, etc.)	IT						
Is the product an	intentional radiator	no						
Product Dimensi	ons							
Product Weight								
Will fork lift be	required	No						
Applicable Stand	lards, if known	EAC 2005 VVSG Volumes I and II						
Describe all envi	ronment(s) where product will be used	Used for voting during elections						
(residential, com	mercial, industrial, etc.)							
	nsist of multiple components? (If yes,	No						
	ach system component)							
	econds? (If yes, how long?)	Yes. 5 sec						
	y generated frequency							
Product Set-up T		15 minu						
Boot up time in t	he event of an unintentional power down	0 minut	es - inte	rnal bac	kup batte	ery		
Identify ALL I/O	connections on the unit(s) under test, as v	vell as M	AXIM	U M asso	ociated ca	ible lengths b	oelow	
			I/O	Гуре	T 41	Patient		
Model No.	Model No. Description			UUT	Length (m)	Connect?	QTY	
			UUT	- SE		(See Note)		
power								
Note: "Patient (Note: "Patient Connect" column applies only to medical devices.							
1.5to. 1 ditetti (sometics only to medical a	C. 1005.						

3.0 Power

Power Requirements	
Does/can product connect to AC mains?	Yes.
(If so, can the UUT function when connected to AC?)	
Input Voltage Rating as it appears on unit, power supply,	115 VAC ; 230 VAC
or power brick	
Input Current (specify @ 230 Vac/50 Hz)	Normal
Single or Multi-Phase	single
(If multi-phase, specify delta or wye)	
Is input power connector two-prong (Hot & Neutral) or	3 prong
3-prong (H, N, Ground)	
Does UUT have more than 1 power cord? (If yes,	No
explain.)	

4.0 Unit Under Test (UUT) – Detailed Information


Configuration During Test Scanning ballots	UUT Hardwa	are						
During Test Scanning ballots	Condition	New						
Input Power Normal AC power UUT Components Name Model No. Serial No. Description ClearCast Model 2, Version A Unit 1 Precinct Tabulator I/O Cabling See Section 2.0 for details UUT Software/Firmware Name Version/Revision Functionality ClearCast N/A Voting systems software UUT Operating Conditions List all frequencies generated/used by the product. How will product be exercised during test? Scanning Ballots How will product be monitored during test? Visually What are the product's critical parameters? Unit keeps scanning		n Scanning ballo	ts					
Name Model No. Serial No. Description ClearCast Model 2, Version A Unit 1 Precinct Tabulator								
Name Model No. Serial No. Description ClearCast Model 2, Version A Unit 1 Precinct Tabulator			wer					
ClearCast Model 2, Version A Unit 1 Precinct Tabulator I/O Cabling See Section 2.0 for details UUT Software/Firmware Name Version/Revision Functionality ClearCast N/A Voting systems software UUT Operating Conditions List all frequencies generated/used by the product. How will product be exercised during test? Scanning Ballots How will product be monitored during test? Visually What are the product's critical parameters? Unit keeps scanning	UUT Compo	onents						
I/O Cabling See Section 2.0 for details UUT Software/Firmware Name Version/Revision Functionality ClearCast N/A Voting systems software UUT Operating Conditions List all frequencies generated/used by the product. How will product be exercised during test? Scanning Ballots How will product be monitored during test? Visually What are the product's critical parameters? Unit keeps scanning	- 100							
See Section 2.0 for details UUT Software/Firmware Name Version/Revision Functionality ClearCast N/A Voting systems software UUT Operating Conditions List all frequencies generated/used by the product. How will product be exercised during test? Scanning Ballots How will product be monitored during test? Visually What are the product's critical parameters? Unit keeps scanning	ClearCast	Model 2, Version A	Unit	it 1 Precinct Tabulator				
See Section 2.0 for details UUT Software/Firmware Name Version/Revision Functionality ClearCast N/A Voting systems software UUT Operating Conditions List all frequencies generated/used by the product. How will product be exercised during test? Scanning Ballots How will product be monitored during test? Visually What are the product's critical parameters? Unit keeps scanning								
See Section 2.0 for details UUT Software/Firmware Name Version/Revision Functionality ClearCast N/A Voting systems software UUT Operating Conditions List all frequencies generated/used by the product. How will product be exercised during test? Scanning Ballots How will product be monitored during test? Visually What are the product's critical parameters? Unit keeps scanning								
See Section 2.0 for details UUT Software/Firmware Name Version/Revision Functionality ClearCast N/A Voting systems software UUT Operating Conditions List all frequencies generated/used by the product. How will product be exercised during test? Scanning Ballots How will product be monitored during test? Visually What are the product's critical parameters? Unit keeps scanning								
See Section 2.0 for details UUT Software/Firmware Name Version/Revision Functionality ClearCast N/A Voting systems software UUT Operating Conditions List all frequencies generated/used by the product. How will product be exercised during test? Scanning Ballots How will product be monitored during test? Visually What are the product's critical parameters? Unit keeps scanning								
See Section 2.0 for details UUT Software/Firmware Name Version/Revision Functionality ClearCast N/A Voting systems software UUT Operating Conditions List all frequencies generated/used by the product. How will product be exercised during test? Scanning Ballots How will product be monitored during test? Visually What are the product's critical parameters? Unit keeps scanning								
See Section 2.0 for details UUT Software/Firmware Name Version/Revision Functionality ClearCast N/A Voting systems software UUT Operating Conditions List all frequencies generated/used by the product. How will product be exercised during test? Scanning Ballots How will product be monitored during test? Visually What are the product's critical parameters? Unit keeps scanning								
See Section 2.0 for details UUT Software/Firmware Name Version/Revision Functionality ClearCast N/A Voting systems software UUT Operating Conditions List all frequencies generated/used by the product. How will product be exercised during test? Scanning Ballots How will product be monitored during test? Visually What are the product's critical parameters? Unit keeps scanning								
Name Version/Revision Functionality ClearCast N/A Voting systems software UUT Operating Conditions List all frequencies generated/used by the product. How will product be exercised during test? Scanning Ballots How will product be monitored during test? Visually What are the product's critical parameters? Unit keeps scanning	I/O Cabling							
Name Version/Revision Functionality ClearCast N/A Voting systems software UUT Operating Conditions List all frequencies generated/used by the product. How will product be exercised during test? Scanning Ballots How will product be monitored during test? Visually What are the product's critical parameters? Unit keeps scanning	See Section 2	.0 for details						
Name Version/Revision Functionality ClearCast N/A Voting systems software UUT Operating Conditions List all frequencies generated/used by the product. How will product be exercised during test? Scanning Ballots How will product be monitored during test? Visually What are the product's critical parameters? Unit keeps scanning	UUT Softwa	re/Firmware						
UUT Operating Conditions List all frequencies generated/used by the product. How will product be exercised during test? How will product be monitored during test? What are the product's critical parameters? Unit keeps scanning			sion	Functionality				
List all frequencies generated/used by the product. How will product be exercised during test? How will product be monitored during test? What are the product's critical parameters? Visually Unit keeps scanning	ClearCast	N/A		· ·				
List all frequencies generated/used by the product. How will product be exercised during test? How will product be monitored during test? What are the product's critical parameters? Visually Unit keeps scanning								
product. How will product be exercised during test? How will product be monitored during test? What are the product's critical parameters? Interval 1.7a Scanning Ballots Visually Unit keeps scanning	UUT Operat	ing Conditions						
How will product be exercised during test? How will product be monitored during test? What are the product's critical parameters? Unit keeps scanning				n/o				
How will product be monitored during test? What are the product's critical parameters? Unit keeps scanning				n/a				
What are the product's critical parameters? Unit keeps scanning				Scanning Ballots				
	How will product be monitored during test?							
				·				
Specify tolerance of all critical parameters. Unit keeps scanning	Specify tolera	nce of all critical parame	ters.	Unit keeps scanning				

5.0 Support Equipment (SE) – Detailed Information

Support Equip	oment (SE)									
Name	Model No.	Serial No.	erial No. Description							
n/a										
SE I/O Cabling										
Model No.		Description	ription Shi			Quantity				
n/a										
0=0 1						<u> </u>				
SE Software/F										
Name	Version/Rev	rision	Func	ctionality						
n/a										

6.0 Block Diagram

Important note: The product data sheet is a critical piece of documentation which is used as the basis for any test reports that NTS will generate; it must be completed *prior* to testing. It should be reviewed carefully by the client. If incorrect information is provided resulting in revisions to test reports, the client will be subject to report revision fees.

APPENDIX D: Test Log

EMI\ENV Test Log

Manufacturer:Pro V&VProject Number:PR085361Model:Clear Ballot Group (manufacturer) Pro V&V (client)S/N:Unit 1

Customer Representative: Michael Walker

Standard Referenced: FCC Part 15, EAC 2005 VVSG

FR0105

10m Emissions

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials
RE	6001	September 6, 2018	Setup for RE		1.0	Complete	KJ
		0800-0900					
RE	1342	0900-1000	Test#1: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter test distance.		1.0	Fail	KJ
			120Vac/60Hz				
			FCC Class B				
			Unit failing multiple frequencies				
		1000-1100	Test#2: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter test distance.		1.0	Fail	KJ
			120Vac/60Hz				
			FCC Class B				
			RE Troubleshooting				
			Ferrite on the HDMI cable and internal power cable.				

EMI\ENV Test Log

Manufacturer: Pro V&V

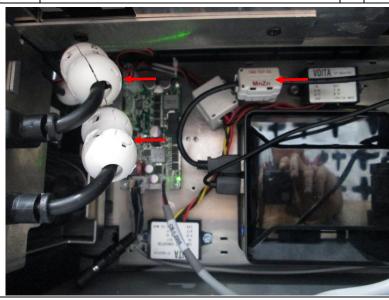
Clear Ballot Group (manufacturer) Pro V&V (client)

Project Number: PR085361

S/N: Unit 1

Model: Clear Ballot Group
Customer Representative: Michael Walker

Standard Referenced: FCC Part 15, EAC 2005 VVSG


FR0105

10m Emissions

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials

1100-1200	Test#3: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter test distance.	1.0	Fail	KJ
	120Vac/60Hz			
	FCC Class B			
	RE Troubleshooting			
	Ferrite on the HDMI cable and internal power cable.			
	Ferrite on 3 USB cables			

S/N:

PR085361

Unit 1

EMI\ENV Test Log

Manufacturer: Pro V&V Project Number:

Model: Clear Ballot Group (manufacturer) Pro V&V (client)

Customer Representative: Michael Walker

Standard Referenced: FCC Part 15, EAC 2005 VVSG

FR0105

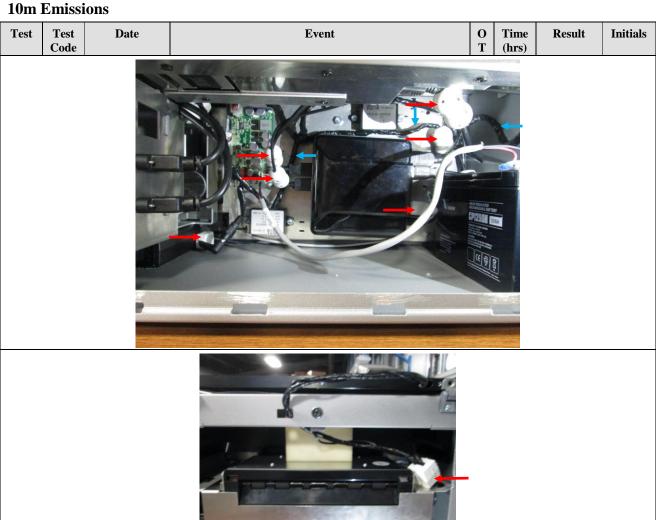
10m Emissions

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials
RE	1351	1230-1330	Test#4: 1GHz – 18GHz, 16 rads, 2 heights, 3 second dwell, ref level = 107dB, 3 meter test distance.		1.0	Complete	KJ
			120Vac/60Hz				
			FCC Class B				
			Client does not want to measure any signals.				
CE	2341	1330-1430	Test#5: 150KHz – 30MHz		1.0	Pass	KJ
			120Vac/60Hz				
			FCC Class B				
RI	4398	1430-1630	Radiated RF Immunity		2.0	Complete	KJ
			(4.1.2.10)				
			10V/m, 80 - 1000 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell				
			120 VAC / 60 Hz				
			EAC 2005 VVSG				
			Did the back side V-pole				
RI		September 7,	Finishing Radiated RF Immunity		4.0	Pass	KJ
		2018 0800-1200	Unit stopped at 239MHz, V-pole, left side. Did not repeat.				
RE		1230-1300	Test#6: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter test distance.		0.5	Fail	KJ
			120Vac/60Hz				
			Cable re-positioning, cable management and ferrites				
			Unit failed at 668MHz by .5dB				
RE		1330-1430	Test#7: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter test distance.		1.0	Pass	KJ
			120Vac/60Hz				
			HDMI cable shielded with foil with ferrites				
			Output power cable shielded				

EMI\ENV Test Log

Pro V&V Manufacturer:

Clear Ballot Group (manufacturer) Pro V&V (client)


Model: Customer Representative: Michael Walker

Standard Referenced: FCC Part 15, EAC 2005 VVSG

PR085361 Project Number:

> S/N: Unit 1

> > FR0105

Regular hours:

13.5

Overtime/Prem hours:

Total hours:

13.5

NOTE: Client says that they do not need to finish 1GHz

to 18GHz Radiated emissions.

Ground Planes / CALC

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials
4-6	4622	September 10,	Conducted RF Immunity		1.0	Pass	CL
		2018	(4.1.2.11)				
		0800 - 0900	10Vrms, 0.15 - 80 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell				
			120 VAC / 60 Hz				
4-4	4411	0900 - 0930	Electrical Fast Transient / Burst		0.5	Pass	CL
			(4.1.2.6)				
			Mains: +/- 2kV, I/O: +/- 1kV				
			120 VAC / 60 Hz @ 100kHz rep rate. Also ran at 5kHz rep rate.				
4-11	4196	0930 - 1000	Voltage Dips and Interruptions		0.5	Pass	CL
			(Inc./Red. of Nom. Voltage) (4.1.2.5)				
			Electric power increases of 7.5% and reductions of 12.5%				
			of nominal specified power. (See Protocol)				
			120 VAC / 60 Hz				
		1000 - 1300	129Vac Line Voltage Variations (+7.5% of nominal 120V) 3hrs.		3.0	Pass	CL
		1300 - 1600	105Vac Line Voltage Variations (-12.5% of nominal 120V) 3 Hrs.		3.0	Pass	CL
		September 11, 2018	Surges of -15% line variations of nominal voltage (102V) 1 Hrs		1.0	Pass	CL
		08009000					
		0900 - 1000	Surges of + 15% of line variations of nominal (138Vac) 1 Hrs.		1.0	Pass	CL
4-5	4596	1000 - 1530	Surge Immunity		5.5		CL
			(4.1.2.7)				
			Mains: +/- 2kV CM, +/- 2kV DM, (0, 90, 180, 270)				
			120 VAC / 60 Hz Note: Post-test verification found				
			touch screen not responding. Will replace screen and re-test tomorrow.				
4-8	4831	1530 - 1630	Power Frequency H-Field Immunity		1.0	Pass	CL
			(4.1.2.12)				
			30A/m, 50 / 60 Hz, 3 axes				
			120 VAC / 60 Hz				
4-5		September 12,	Re-test Surge Immunity		5.0	Pass	CL
		2018	(4.1.2.7)				
		0800 - 1300	Mains: +/- 2kV CM, +/- 2kV DM, (0, 90, 180, 270)				
			120 VAC / 60 Hz				
4-2	4254	1300 - 1500	Electrostatic Discharge Note: Pre-test performed, cables are .931 and .947		2.0	Pass	CL
			(4.1.2.8)				
			+/- 8kV Contact, +/-2, 4, 8, 15kV Air				
			120 VAC / 60 Hz				

Regular hours: 23.5

Overtime/Prem hours: 23.5

Total hours: 23.5

Project #:PR085361 Work Order #: 2018080601 PO#:

B80857

Company: Pro V&V Contact: Michael Walker Model#:

700 Boulevard South Email: Serial #: Suite 102 michael.walker@provandv.com

Suite 102 michael.walker@provandv.com Huntsville, AL 35802

Phone: 256-713-11111

Fax:

Test Notes: Voting Machine Testing

Three (5) units for test

PQF: Increase/decrease = 3 hrs each -/+, 6 hrs total per unit

PQF: Surge = 4 hrs each Data sheet folder for each unit

Formal test reports

	Quoted Work						
Date	Test Code	Description	Standard	Result	Billed		
September 6, 2018	1342	Radiated Emissions, 30 MHz - 1 GHz (4.1.2.9) 30 MHz - 1 GHz 120 VAC / 60 Hz	FCC Part 15, Class B	Pass			
September 6, 2018	1351	Radiated Emissions, 1 GHz - 18 GHz (4.1.2.9) 1 GHz - 18 GHz 120 VAC / 60 Hz	FCC Part 15, Class B	Fail			
September 6, 2018	2341	Conducted Emissions, 150 kHz - 30 MHz (4.1.2.9) 120 VAC / 60 Hz	FCC Part 15, Class B	Pass			
September 12, 2018	4254	Electrostatic Discharge (4.1.2.8) +/- 8kV Contact, +/-2, 4, 8, 15kV Air 120 VAC / 60 Hz	EN61000-4-2	Pass			
September 6, 2018	4398	Radiated RF Immunity (4.1.2.10) 10V/m, 80 - 1000 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell 120 VAC / 60 Hz		Pass			
September 10, 2018	4411	Electrical Fast Transient / Burst (4.1.2.6) Mains: +/- 2kV, I/O: +/- 1kV 120 VAC / 60 Hz	EN61000-4-4	Pass			
September 11, 2018	4596	Surge Immunity (4.1.2.7) Mains: +/- 2kV CM, +/- 2kV DM, (0, 90, 180, 270) 120 VAC / 60 Hz	EN61000-4-5	Pass			

September 10,	4622	Conducted RF Immunity	EN61000-4-6	Pass	
2018		(4.1.2.11)			
		10Vrms, 0.15 - 80 MHz, 1% Step, 80% AM, 1kHz			
		sine, 3s dwell			
		120 VAC / 60 Hz			
September 11,	4831	Power Frequency H-Field Immunity	EN61000-4-8	Pass	
2018		(4.1.2.12)			
		30A/m, 50 / 60 Hz, 3 axes			
		120 VAC / 60 Hz			
September 10,	4196	Voltage Dips and Interruptions	EN61000-4-11	Pass	
2018		(Inc./Red. of Nom. Voltage) (4.1.2.5)			
		Electric power increases of 7.5% and reductions of			
		12.5% of nominal specified power. (See Protocol)			
		120 VAC / 60 Hz			
September 11,	4194	Voltage Dips and Interruptions	EN61000-4-11	Pass	
2018		(Surge of +/- 15%) (4.1.2.5)			
		Surge of +/- 15% line variation of nominal line			
		voltage			
G . 1 10	4102	120 VAC / 60 Hz	ENG1000 4 11	D	
September 10, 2018	4193	Voltage Dips and Interruptions	EN61000-4-11	Pass	
2016		(4.1.2.5)			
		70% nom, 0.6 cycles / 40% nom, 6 cycles & 1 sec. / 0% nom, 300 cycles			
		120 VAC / 60 Hz			
September 6,	6001	Initial Product Set-up & Configuration			
2018	0001	Engineering / Trouble-Shoot			
		Liighteering / Trouble-Shoot			
	9010	Immunity Test Report - Soft Copy			
	7010				
	9040	Emissions Test Report - Soft Copy			
	7040				
1			l		

Unquoted Work						
Date	Test Code	Description	Cost	Billed		

Modifications Required For Compliance					
Test	Description of Modification	Client Initials			
RE	(1) 742 717 22 Wurth ferrite				
	(1) 742 711 42 Wurth ferrite				
	(1) 742 711 32 Wurth ferrite				
	(2) 742 758 13 Wurth ferrites				
	(2) 742 758 12 Wurth ferrites				
	Shielded HDMI and output power cable				
	See photo in test log. Red arrows for ferrites and blue arrows for shielded cable				

Modifications Required For Compliance						
Test	Description of Modification	Client Initials				
Shipping Instructions		Client Initials				
Supervisor	Date:					
Test Engineer	: Date:					
was accurate.	erify that all the information provided concerning the unit which was tested, support equip This includes, but is not limited to, information provided via EMC Test Plan and/or mation provided to complete NTS's Product Data Sheet, etc.					
	understand that my company may be assessed report revision fees for any report revision e or incomplete information provided.	ns resulting				
Client	Date:					
	☐ Invoice Complete Invoice #:					

APPENDIX E: Laboratory Accreditations

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

NATIONAL TECHNICAL SYSTEMS (NTS) - LONGMONT 1736 Vista View Drive Longmont, CO 80504-5242 Mr. Eric Loucks Phone: 303 776 7249

ELECTRICAL

Valid To: September 30, 2018 Certificate Number: 0214.43

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following Electromagnetic Compatibility/Interference (EMC/EMI), Lightning, Transient, Surge, and Product Safety tests:

Test Technology:	Test Method(s) ^{1,2} :
Emissions Radiated and Conducted	CFR 47 FCC, Parts 15B (using ANSI C63.4: 2014), 15C (using ANSI C63.10:2013), and 18 (using MP-5:1986); CISPR 32, Ed. 1 (2012-01); EN 55032:2012/AC:2013; AS/NZS CISPR 22 (2002); AS/NZS 3548 (1997); AS/NZS CISPR 14-1 (2003); IEC/CISPR 14-1, Ed. 4 (2003); IEC 61000-3-12, Ed. 2.0 (2011); EN 61000-3-12 (2011); IEC 61000-6-1, Ed. 2 (2005-03); IEC 61000-6-2, Ed. 2.0 (2005-01); IEC 61000-6-3 (1996); EN 61000-6-3 (2001) + A1 (2004); EN 61000-6-4 (2007); KN 32:2015 (Annex 11); KN 22; KN 11
Harmonics	IEC 61000-3-2, Ed. 2.2 (2004-11); IEC 61000-3-2, Ed. 3.0 (2005) + A1 (2008) + A2 (2009); IEC 61000-3-2, Ed. 4.0 (2014-05)
Flicker	IEC 61000-3-3, Ed. 1.1 (2002-03); EN 61000-3-3 + Al (2001); IEC 61000-3-3, Ed. 1.1 (2003) + A2 (2005); IEC 61000-3-3, Ed. 3.0 (2013-05)
Immunity Electrostatic Discharge (ESD)	IEC 61000-4-2 (2001); EN 61000-4-2 (2001) + A2 (2001); EN 61000-4-2 + A1 (1998) + A2 (2001); IEC 61000-4-2, Ed. 2.0 (2008-12); EN 61000-4-2 (2009-05); KN 61000-4-2; KN 61000-4-2 (2008-5); KN 61000-4-2 (Annex 1-1)
Radiated	IEC/EN 61000-4-3, Ed. 2.1 (2002) + A1 (2002); EN 61000-4-3; IEC 61000-4-3 (1995) + A1 (1998) + A2 (2000); EN 61000-4-3 (2002) + A1 (2002); IEC 61000-4-3, Ed. 3.0 (2006-02) + A1 (2007) + A2 (2010); EN 61000-4-3 (2006) + A1 (2008) + A2 (2010); KN 61000-4-3; KN 61000-4-3 (2008-5); KN 61000-4-3 (Annex 1-2)

(A2LA Cert. No. 0214.43) Revised 08/30/2018

Langer

age 1 of 4

Test Method(s)1,2: Test Technology:

Immunity (cont'd)

Electrical Fast Transient/Burst IEC 61000-4-4, Ed. 2.0 (2004-07); EN 61000-4-4 (2004);

EN 61000-4-4:2012; IEC 61000-4-4 (2012-04);

KN 61000-4-4; KN 61000-4-4 (2008-5);

KN 61000-4-4 (Annex 1-3)

IEC 61000-4-5, Ed. 2.0 (2005-11); EN 61000-4-5; Surge

IEC 61000-4-5, Ed. 3.0 (May 2014); BS EN 61000-4-5 (2006); EN 61000-4-5: 2014; KN 61000-4-5; KN 61000-4-5 (2008-5);

KN 61000-4-5 (Annex 1-4); IEEE C62.41.1 (2002); IEEE C62.41.2 (2002); IEEE C62.25 (2002)

Conducted IEC 61000-4-6, Ed. 2.1 (2004); EN 61000-4-6;

EN 61000-4-6 (1996) + A1 (2001);

IEC 61000-4-6, Ed. 2.2 (2006-05); IEC 61000-4-6, Ed. 3.0 (2008);

IEC 61000-4-6, Ed. 4.0 (2013); EN 61000-4-6 (2009); EN 61000-4-6 (2014); KN 61000-4-6; KN 61000-4-6 (2008-5);

KN 61000-4-6 (Annex 1-5)

IEC 61000-4-8 (2001) + A1 (2000); Power Frequency Magnetic Field

EN 61000-4-8 (2001) + A1 (2000);

EN 61000-4-8 (1993) + A1 (2001); IEC 61000-4-8 (2009); EN 61000-4-8:2010; KN 61000-4-8; KN 61000-4-8 (2008-5);

KN 61000-4-8 (Annex 1-6)

Voltage Dips, Short Interruptions, and Voltage

Variations

IEC 61000-4-11, Ed. 2 (2004-03); EN 61000-4-11; EN 61000-4-11 (1994) + Al (2001); EN 61000-4-11 (2004);

KN 61000-4-11; KN 61000-4-11 (2008-5);

KN 61000-4-11 (Annex 1-7)

Product Safety

Medical Electrical IEC 60601-1-2, Ed. 3.0 (2007); KN 60601-1-2 (2008-5); Equipment IEC 60601-1-2, Ed. 4, (2014-02); EN 60601-1-2 (2007);

EN 60601-1-2 (2015)

Generic/Product Family Standards

and Industry Standards

Generic Standards EN 61326-1: 2013; KN 35: 2015

Information Technology IEC/CISPR 22 (1997); EN 55022 (1998) + A1 (2000);

Equipment IEC/CISPR 22 (1993); EN 55022 (1994);

IEC/CISPR 22 (1993); EN 55022 (1994) + A1 (1995) + A2 (1997);

CNS 13438 (1997):

IEC/CISPR 22, Ed. 4 (2003-04); EN 55022 (1998); IEC/CISPR 22, Ed. 5 (2005); EN 55022 (1998); IEC/CISPR 22, Ed. 5 (2005) + A1 (2005); EN 55022 (1998) + A1 (2000) + A2 (2003);

(A2LA Cert. No. 0214.43) Revised 08/30/2018

Page 2 of 4

Test Technology:

Test Method(s)1,2:

Generic/Product Family Standards and Industry Standards (cont'd)

Information Technology Equipment (cont'd)

CNS 13438 (2006) (up to 6GHz);

IEC/CISPR 22, Edition 5.2 (2006-03); EN 55022 (2006); EN 55022 (2006) + A1 (2007); EN 55022:2010; IEC/CISPR 22

(2008-09); AS/NZS CISPR 22 (2009); TCVN 7189:2009 (CISPR 22:2006);

VCCI V-3 (2009.04, 2011.04, 2013.04, 2014.04, 2015.04) (up to 6

GHz); VCCI-CISPR 32:2016;

CISPR 24 Ed 2.0 (2010-08); EN 55024 (2010);

KN 24

Industrial, Scientific, and Medical (ISM) Equipment AS/NZS CISPR 11 (2002); IEC/CISPR 11, Ed. 4.1 (2004-06);

AS/NZS CISPR 11 (2004):

IEC/CISPR 11, Ed. 4.1 (2004-06) + A1 (2004); EN 55011 (1998) + A1 (1999) + A2 (2002);

IEC/CISPR 11 (2003); EN 55011 (1998) + A2(2002);

EN 55011 (2009) + A1 (2010); IEC/CISPR 11 Ed. 5 (2009-05);

CISPR 11 Ed. 5.1 (2010)

Measure IEC 61326-1 Ed. 2.0 (2012)

Military/Defense MIL-STD-461F Method CE101 (30 Hz to 10 kHz);

> MIL-STD-461F Method CE102 (10 kHz to 10 MHz); MIL-STD-461F Method CE106 (10 kHz to 40 GHz); MIL-STD-461F Method CS101 (30 Hz to 150 kHz);

MIL-STD-461F Method CS106;

MIL-STD-461F Method CS114 (10 kHz to 200 MHz); MIL-STD-461F Method CS116 (10 kHz to 100 MHz); MIL-STD-461F Method RE101 (30 Hz to 100 kHz); MIL-STD-461F Method RE102 (10 kHz to 18 GHz); MIL-STD-461F Method RE103 (10 kHz to 40 GHz); MIL-STD-461F Method RS101 (30 Hz to 100 kHz); MIL-STD-461F Method RS103 (2 MHz to 40 GHz)

On the following types of products:

Telecommunication Equipment, Network Equipment, Industrial and Commercial Equipment, Electronic (Digital) Equipment, Medical, Aerospace, Military. Information Technology Equipment, Multimedia Equipment, Scientific Equipment Page 3 of 4

(A2LA Cert. No. 0214.43) Revised 08/30/2018

When the date, revision or edition of a test method standard is not identified on the scope of accreditation, the laboratory is required to be using the current version within one year of the date of publication, per part C., Section 1 of A2LA R101 - General Requirements- Accreditation of ISO-IEC 17025 Laboratories. If a specifier/regulator imposes a different transition period, this will supersede the A2LA one-year implementation period.

² The laboratory is only accredited for testing activities outlined within the test methods listed above. Reference to any other activity within these standards, such as risk management or risk assessment, does not fall within the laboratory's accredited capabilities.

Testing Activities Performed in Support of FCC Declaration of Conformity and Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.13

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Unintentional Radiators</u> Part 15B	ANSI C63.4:2014	40000
<u>Industrial, Scientific, and Medical Equipment</u> Part 18	FCC MP-5 (February 1986)	40000
Intentional Radiators Part 15C	ANSI C63.10:2013	40000

³Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (https://apps.fcc.gov/oetcf/eas/) for a listing of FCC approved laboratories.

(A2LA Cert. No. 0214.43) Revised 08/30/2018

Page 4 of 4

Accredited Laboratory

A2LA has accredited

NATIONAL TECHNICAL SYSTEMS (NTS) - LONGMONT

Longmont, CO

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 28th day of October 2016.

President and CEO For the Accreditation Council Certificate Number 0214.43 Valid to September 30, 2018 Revised August 30, 2018

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

END OF REPORT