

Test Report of Radiated and Conducted Emissions Testing Performed on Clear Access Ballot Marking Device

Issue Date: 11 June 2018

Prepared for: **Pro V&V**

700 Boulevard South, Suite 102

Huntsville, AL 35802

Prepared by: National Technical Systems

NTS Longmont

1736 Vista View Drive

Longmont, Colorado 80504

Certificate Number: 0214.43

This report and the information contained herein represents the results of testing of only those articles/products identified in this document and selected by the client. The tests were performed to specifications and/or procedures approved by the client. National Technical Systems ("NTS") makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it present any statement whatsoever as to the merchantability or fitness of the test article or similar products for a particular purpose. This document shall not be reproduced except in full without written approval from NTS.

SIGNATURES

Prepared by:	Manh Haynes Preparer, Mark Haynes	Date:	06/08/2018
Reviewed & Approved by:	Jah Wak	Date:	06/08/2018
Reviewed & Approved by:	Technical Approval, John Tate Michael Jyraham	Date:	06/08/2018
	Technical Reviewer, Michael Graham		

REVISIONS

Revision	Reason for Revision	Date
NR	Initial Release	08 May 2018

TABLE OF CONTENTS

		<u>PAGE NO</u> .
ADMINISTR	ATIVE DATA	6
TEST SUM	MARY	10
FACTUAL D	DATA	11
1.0	RADIATED EMISSIONS TEST	11
2.0	CONDUCTED EMISSIONS TEST	12
APPENDIX	A - RADIATED EMISSIONS TEST DATA	14
APPENDIX	B - CONDUCTED EMISSIONS TEST DATA	61
APPENDIX	C - PRODUCT DATA SHEET	101
APPENDIX	D - EMI TEST LOG	108
APPENDIX	E - LABORATORY ACCREDITATION	112

LIST OF TABLES

	PAGE N	<u>O</u> .

ADMINISTRATIVE DATA

A. <u>PURPOSE OF TESTS</u>

This report documents the test efforts performed on the Clear Access ballot marking device to verify compliance to the Class B limits of FCC Part 15 and ICES-003. This was a formal qualification test and was conducted on selected dates from May 8 thru May 14, 2018.

The normative references of this standard define the test methods used for the emissions testing. These standards are defined in Table 1.

Table 1. Standards Table					
CFR Title 47 FCC Part 15 ICES-003, Issue 6, 2016					
ANSI C63.4: 2014	VVSG 1.0				

B. <u>DESCRIPTION OF TEST ITEM</u>

These products are a Clear Access ballot marking device designed for use in commercial and office environments. The products were continually exercised during testing, as documented in the "configuration" field of the test data sheets.

C. MANUFACTURER

Clear Ballot Group Boston, MA

D. <u>REFERENCES</u>

- 1. Pro V&V's Product Data Sheet 15 May 2018
- 2. ISO 17025:2005

E. QUANTITY OF ITEMS TESTED

Quantity	Test Item Description	Model Numbers	Serial Numbers						
	Configuration 1								
1	AIO Touchscreen	ESY15E2	A18C004079						
1	Printer	HL-L2350DW	U64964AN263525						
1	UPS	SMT-2200	AS1638230963						
	Conf	iguration 2							
1	AIO Touchscreen	ESY15E2	D18Q000334						
1	Printer	B432dn	AK7A044093A0						
1	UPS	SMT-2200 AS1721132721							
	Conf	iguration 3							
1	AIO Touchscreen	ESY20X2	D18Q000335						
1	Printer	HL-L2350DW	U64964A8N263531						
1	UPS	SMT-2200	AS1721142050						
	Configuration 4								
1	AIO Touchscreen	ESY20X2	A18C004071						
1	Printer	B432dn AK7A044083A0							
1	UPS	SMT-2200	AS1721132721						

F. <u>SECURITY CLASSIFICATION</u>

Unclassified

G. <u>TESTS CONDUCTED BY</u>

National Technical Systems NTS Longmont 1736 Vista View Drive Longmont, Colorado 80504

H. <u>DISPOSITION OF TEST ITEMS</u>

Returned to:

Pro V&V 700 Boulevard South, Suite 102 Huntsville, AL 35802

I. <u>TEST ENVIRONMENT</u>

Radiated Emissions Test Site

Radiated emissions testing was performed at a distance of 10-meters in a semi-anechoic 10-meter chamber. This chamber is calibrated annually and meets the volumetric site attenuation requirements of CISPR 16 at a distance of 10 meters. For measurements from 30 MHz to 1 GHz, a biconilog antenna is used in conjunction with a high-gain, low-noise preamplifier. This is connected to an HP 8566B spectrum analyzer with an HP 85650A Quasi-Peak (QP) Adapter, via an HP 85685 RF Preselector.

Radiated emissions testing is broken into two parts: pre-scan and QP/maximization. Pre-scanning a product from 30 MHz to 1 GHz consists of measuring peak emissions from eight radials (every 45 degrees), at four antenna heights (1 m, 2 m, 3 m and 4 m) for both antenna polarities. Data is recorded in a graph showing amplitude vs. frequency of the emissions, and frequencies for QP/maximization are chosen based on this graph. The procedure for maximizing emissions is as follows:

- 1. The analyzer is tuned to the frequency associated with the emissions having the least margin.
- 2. The turntable and antenna mast are moved to the location where the maximum emission was measured during the pre-scan.
- 3. Both are then oriented such that the maximum emission is obtained.
- 4. Cables on the UUT are manually manipulated to achieve the maximum emission.
- 5. The turntable and antenna mast are then re-adjusted to ensure a maximum reading.
- 6. If the signal in question is less than 1 GHz, quasi-peak detection is performed on the signal for a minimum of 10 seconds. For signals greater than 1 GHz, video averaging is performed.
- 7. Turntable/antenna mast maximization and QP detection are performed on all other signals within 6 dB of the limit. In the event that there are not six signals within 6 dB of the limit, the highest six signals are maximized. This ensures that a minimum of six signals are maximized and appear in the final data table.

In the event that emission measurements are required above 1 GHz, the antenna is changed to a double-ridged horn equipped with a preamplifier and run directly into the spectrum analyzer. The QP adapter and RF pre-selector are not used above 1 GHz.

Pre-scanning a product from 1-18 GHz is performed similarly, except that 16 radials (every 22.5 degrees) and three antenna heights (1 m, 1.5 m and 2 m) are used. A similar maximization process is used as for the lower frequency range, except that average measurements are performed, rather than QP measurements.

J. <u>Measurement Uncertainty</u>

The measurement uncertainty for NTS's emissions test facility complies with the requirements defined in CISPR 16. The complete calculation of NTS's measurement uncertainty is contained in an NTS memo, which is available upon request. However, a summary of NTS's measurement uncertainty is given in Table 2-1.

Table 2-1

Test	Requirement	Actual
Radiated Emissions – Horizontal Polarity	5.20 dB	4.67 dB
Radiated Emissions – Vertical Polarity	5.20 dB	5.01 dB

K. <u>TEST APPARATUS</u>

The instrumentation used in the performance of these tests is periodically calibrated and standardized within manufacturer's rated accuracies and are traceable to the National Institute of Standards and Technology. The calibration procedures and practices are in accordance with ISO 17025:2005. Certification of calibration is on file subject to inspection by authorized personnel.

L. <u>SOURCE INSPECTION</u>

NTS QA

M. PURCHASE ORDER NUMBER

2018-008

TEST SUMMARY

The test program may be chronologically summarized as follows:

Paragraph	Test Title	Specification	Test Dates	Results
1.0	Radiated Emissions Test	CFR Title 47 FCC Part 15	May 8 through May 14, 2018	Pass
2.0	Conducted Emissions	CFR Title 47 FCC Part 15	May 8 through May 14, 2018	Pass

FACTUAL DATA

1.0 RADIATED EMISSIONS TEST

References and Requirements

CFR Title 47 FCC Part 15

1.1 <u>Test Requirements</u>

1.1.1 The UUT(s) shall be subjected to Radiated Emissions Test in accordance with the referenced documents.

1.2 <u>Test Procedure</u>

The emission limits applied to the product tested are defined in CFR Title 47, FCC Parts 15.107 and 15.109. This is the U.S. document which governs electromagnetic emissions from computing devices for conducted and radiated emissions, respectively. The UUT was set up as specified in ANSI C63.4: 2014.

1.2.1 **Special Configurations:** Four different equipment array configurations were tested.

1.3 **Test Results**

1.3.1 Radiated electric field emissions were measured on the UUT over the frequency range from 30 MHz to 1 GHz. The UUT was powered from 120Vac/60Hz, configured in its normal operating mode, and exercised continually during testing. Cables were oriented such that the maximum emission was achieved and quasi-peak detection was performed on all signals (minimum of six) used in the final data table.

Test Input Voltage	Test Result	Margin dB	Frequency MHz						
Configuration 1									
120Vac/60Hz	Compliant	7.83	666.673						
	Configuration 2								
120Vac/60Hz	Compliant	3.22	1333.333						
	Configuration 3								
120Vac/60Hz	Compliant	3.75	104.304						
Configuration 4									
120Vac/60Hz	Compliant	0.15	73.99						

The Radiated Emissions Test Data is presented in Appendix A.

2.0 <u>CONDUCTED EMISSIONS TEST</u>

References and Requirements

CFR Title 47 FCC Part 15

2.1 <u>Test Requirements</u>

2.1.1 The UUT(s) shall be subjected to the Conducted Emissions Test accordance with the referenced document.

2.2 <u>Test Procedure</u>

The UUT was set up in accordance with ANSI C63.4 and tested to the Class A limits specified in FCC 15.107.

2.2.1 **Special Configurations**: Four different equipment array configurations were tested.

2.3 <u>Test Results</u>

Conducted emissions were measured on the AC power input of the UUT over the frequency range from 150 kHz to 30 MHz. With the UUT configured in its normal operating mode, testing was performed with UUT powered from 120Vac/60Hz. The input power to both the UUT and the support equipment was run through standard 50 $\Omega/50~\mu H$ line impedance stabilization networks (LISNs) which complied with the requirements of ANSI C63.4. Emissions were compared to both quasi-peak (QP) and average limits, with QP detection and averaging performed on the six highest signals.

Test Input Voltage	Test Result	Margin dB	Frequency MHz						
	Configuration 1								
120Vac/60Hz	Compliant	6.38	0.156						
	Configuration 2								
120Vac/60Hz	20Vac/60Hz Compliant 4.21		0.151						
	Configuration 3								
120Vac/60Hz	120Vac/60Hz Compliant		0.151						
Configuration 4									
120Vac/60Hz	Compliant	9.46	0.151						

- 2.3.1 The visual inspections revealed no anomalies.
- 2.3.2 The Conducted Emissions Test Data is presented in Appendix B.

APPENDIX A - RADIATED EMISSIONS TEST DATA CONFIGURATION 1

Manufacturer:Pro V&VProject Number:PR079580Customer Representative:Stephen HanTest Area:10M #1

 Model:
 ClearAccess
 S/N:
 A18C004079

 ELO
 ESY15E2
 U64964AN2635

ELO ESY15E2 U64964AN263525
Brother HL-L2350DW AS1638230963
APC SMT-2200

Standard Referenced: FCC Class B Date: May 8, 2018

Temperature: 25°C Humidity: 30% Pressure: 841 mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Printing Ballots
Test Engineer: Mike Tidquist

PR079580-22-RE.doc FR0100

Type	Frequency (MHz)	Level (dBuV)	Transducer (dB/m)	Gain / Loss (dB)	Final (dBuV/m)	Azm(deg)/Pol /Hgt(m)	Margin: FCC Class B QP (dB)	Margin: FCC Class B AV (dB)
QP	40.701	21.2	13.3	-30.9	3.6	135/V-	25.94	-
						Pole/2.00		
QP	52.001	39.3	7.4	-31.1	15.6	20/V-	13.98	-
						Pole/1.00		
QP	112.011	36.0	13.2	-30.9	18.3	0/V-Pole/1.55	14.73	-
QP	228.652	28.1	10.9	-30.4	8.6	107/H-	26.91	-
						Pole/4.00		
QP	341.130	25.0	13.9	-30.0	9.0	27/H-	26.58	-
						Pole/2.31		
QP	378.980	24.6	14.9	-30.0	9.5	270/H-	26.04	-
						Pole/3.00		
QP	400.004	34.6	15.6	-29.9	20.3	147/H-	15.25	-
						Pole/2.47		
QP	666.673	37.3	19.3	-28.9	27.7	166/H-	7.83	-
						Pole/1.50		
QP	825.625	22.4	21.3	-28.3	15.4	225/H-	20.10	-
						Pole/2.00		

Manufacturer:Pro V&VProject Number:PR079580Customer Representative:Stephen HanTest Area:10M #1Model:Clear AccessS/N:A18C004079

 ClearAccess
 S/N: A18C004079

 ELO ESY15E2
 U64964AN263525

 Brother HL-L2350DW
 AS1638230963

 APC SMT-2200
 SMT-2200

Standard Referenced: FCC Class B Date: May 8, 2018
Temperature: 25°C Humidity: 30% Pressure: 841 mb

Temperature: 25°C Humidity: 30% Pressure: 841 mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Printing Ballots

Test Engineer: Mike Tidquist

PR079580-22-RE.doc FR0100

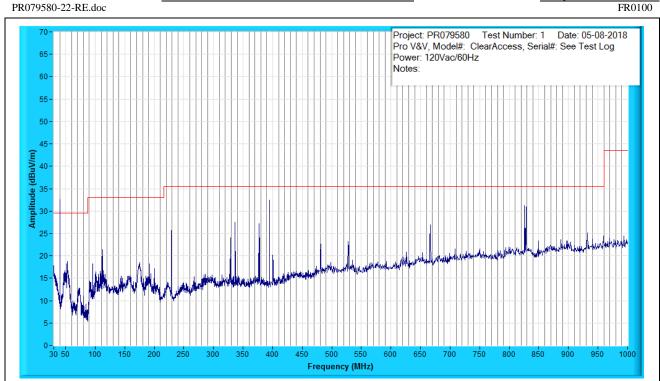
Type	Frequency	Level	Transducer	Gain / Loss	Final	Azm(deg)/Pol/Hgt(m	Margin: FCC	Margin: FCC
	(MHz)	(dBuV)	(dB/m)	(dB)	(dBuV/m))	Class B >1GHz PK	Class B >1GHz
							(dB)	AV (dB)
AV	1824.003	86.8	27.7	-70.9	43.7	322/H-Pole/1.96	-	10.27
PK	1824.003	99.2	27.7	-70.9	56.0	322/H-Pole/1.96	17.92	-
AV	3000.029	86.2	30.9	-71.0	46.1	202/V-Pole/1.27	-	7.85
PK	3000.029	91.9	30.9	-71.0	51.8	202/V-Pole/1.27	22.15	-
AV	3333.359	81.5	32.0	-71.1	42.4	192/V-Pole/1.82	-	11.57
PK	3333.359	89.1	32.0	-71.1	50.0	192/V-Pole/1.82	23.92	=
AV	9155.169	66.4	38.1	-68.6	35.9	292/V-Pole/2.50	-	18.05
PK	9155.169	79.6	38.1	-68.6	49.1	292/V-Pole/2.50	24.85	-
AV	10147.621	65.0	38.3	-67.5	35.9	318/H-Pole/2.50	-	18.10
PK	10147.621	78.0	38.3	-67.5	48.9	318/H-Pole/2.50	25.10	-
AV	17601.334	52.1	46.7	-59.8	39.1	300/H-Pole/4.00	-	14.86
PK	17601.334	65.5	46.7	-59.8	52.5	300/H-Pole/4.00	21.51	-

The highest emission measured was at 666.673 MHz, which was 7.83 dB below the limit.

- > "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
 - PK = Peak Measurement: RBW is 120kHz, VBW is 3 MHz
 - QP = Quasi-Peak Measurement: RBW is 120kHz, VBW is 3 MHz, and QP Detection is ENABLED
 - AV = Video Average Measurement: RBW is 1 MHz, VBW is 10 Hz
- The "Final" emissions level is attained by taking the "Level" and adding the "Transducer" factor and the "Gain/Loss" factor. Final measurements are made with the Azimuth, Polarity, Height, and EUT Cables positioned for maximum radiation. If applicable, cables positions are noted in the test log. (Sample Calculation: 49.6 dBuV + 11.4 dB/m 28.8 dB = 32.2 dBuV/m. **Important Note**: This is a sample calculation only for the purpose of demonstration, and does not reflect data in this report.)
- The "Azm/Pol/Hgt" indicates the turn-table *azimuth*, the antenna *polarity*, and the antenna *height* where the maximum emissions level was measured.
- > The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.
- The PRESCAN is a peak measurement and is performed with the RBW set to 120 kHz, VBW set to 3 MHz (30 MHz)

Date: May 8, 2018

GHz), and the RBW set to 1 MHz, VBW set to 100 kHz (> 1 GHz)



Radiated Emissions, FCC Part 15

Manufacturer: Pro V&V Project Number: PR079580 Stephen Han Customer Representative: Test Area: 10M #1 Model: ClearAccess S/N: A18C004079 **ELO** ESY15E2 U64964AN263525 Brother HL-L2350DW AS1638230963 APC SMT-2200

Standard Referenced: FCC Class B

PR079580-22-RE.doc

Manufacturer: Pro V&V Project Number: PR079580 Stephen Han 10M #1 Customer Representative: Test Area: Model: ClearAccess S/N: A18C004079 **ELO** ESY15E2 U64964AN263525 Brother HL-L2350DW AS1638230963 APC SMT-2200 Standard Referenced: FCC Class B Date: May 8, 2018 PR079580-22-RE.doc FR0100

Figure A1: Radiated Emissions Prescan, 30MHz to 1000MHz, Peak Measurements at 10m Distance

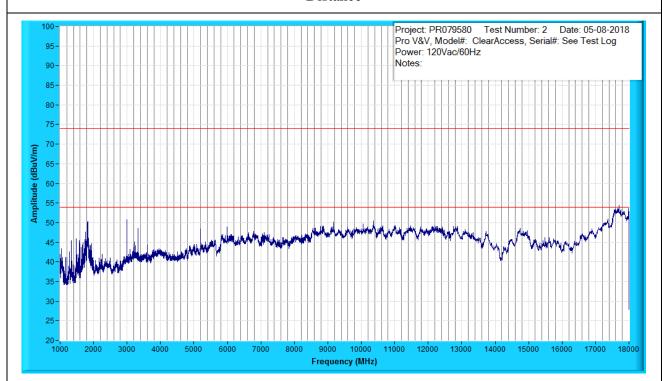


Figure A2: Radiated Emissions Prescan, 1GHz to 18GHz, Peak Measurements at 3m Distance

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess A18C004079 Model: S/N: ELO ESY15E2 U64964AN263525 Brother HL-L2350DW AS1638230963 SMT-2200 APC

Standard Referenced: FCC Class B Date: May 8, 2018

Figure A3: Radiated Emissions Test Setup – Front Side

PR079580 Manufacturer: Pro V&V Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess A18C004079 Model: S/N: ELO ESY15E2 U64964AN263525 Brother HL-L2350DW AS1638230963 SMT-2200 APC

Date: May 8, 2018 Standard Referenced: FCC Class B

PR079580-22-RE.doc

Figure A4: Radiated Emissions Test Setup – Right Side

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess A18C004079 Model: S/N: ELO ESY15E2 U64964AN263525 Brother HL-L2350DW AS1638230963 SMT-2200 APC

Standard Referenced: FCC Class B Date: May 8, 2018

Figure A5: Radiated Emissions Test Setup – Back Side

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess S/N: A18C004079 Model: ELO ESY15E2 U64964AN263525 Brother HL-L2350DW AS1638230963 SMT-2200 APC

Standard Referenced: FCC Class B Date: May 8, 2018

PR079580-22-RE.doc

Figure A6: Radiated Emissions Test Setup – Left Side

U64964AN263525

AS1638230963

Radiated Emissions, FCC Part 15

PR079580 Manufacturer: Pro V&V Project Number: Test Area: Customer Representative: Stephen Han 10M #1 ClearAccess S/N: A18C004079 Model:

ELO ESY15E2 Brother HL-L2350DW SMT-2200 APC

Standard Referenced: FCC Class B Date: May 8, 2018

Figure A7: Radiated Emissions Test Setup – Front Side @ 3M

Manufacturer: Pro V&V
Customer Representative: Stephen Han
Model: ClearAccess

ELO ESY15E2
Brother HL-L2350DW
APC SMT-2200

Standard Referenced: FCC Class B
PR079580-22-RE.doc

Test Equipment List

A18C004079 U64964AN263525 AS1638230963

Date: May 8, 2018 FR0100

ID Namela and	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
Number						
1219	Mini-Circuits	ZKL-2	062905	Preamp, 10 - 2000 MHz, 30 dB	03/02/2018	03/02/2019
1229	Hewlett Packard	85685A	3010A01077	RF Preselector	02/09/2018	02/09/2019
1232	Sunol Sciences	JB1	A071605-2	Bilog Antenna, 30 MHz to 2.0 GHz	06/20/2017	06/20/2018
1233	Sunol Sciences	SC104V	110305-1	Positioning Controller	NA	NA
1234	CIR Enterprises	10m Chamber	001	10m Chamber with 2.5m turntable	05/10/2017	05/10/2018
1238	Sunol Sciences	TWR95-4	110305-3	Antenna Mast	NA	NA
1239	Sunol Sciences	FM2522VS	110305-2	Turn Table, 2.5m Diameter	01/26/2018	01/26/2019
1264	Hewlett Packard	85662A	2848A18247	Spectrum Analyzer Display	02/09/2018	02/09/2019
1265	Hewlett Packard	85650A	2521A00641	Quasi-Peak Adapter	02/09/2018	02/09/2019
1265	Hewlett Packard	85650A	2521A00641	Quasi-Peak Adapter	02/09/2018	02/09/2019
1266	California Instruments	MX15-1	57961	AC Power Source, 0 - 300 VAC / 16 - 819 Hz / 15kVA	NA	NA
1266	California Instruments	MX15-1	57961	AC Power Source, 0 - 300 VAC / 16 - 819 Hz / 15kVA	NA	NA
1276	Ciao Wireless	CA118-3010	116, 117 and 118	1GHz to 18GHz Preamplifier, 70dB gain nominal	10/09/2017	10/09/2018
1392	Sunol	DRH-118	A020311	1-18 GHz Double-Ridged Horn Antenna	12/07/2017	12/07/2018
1538	Extech Instruments	445715	Z315812	Hygro-Thermometer	05/09/2017	05/09/2018
1555	Com-Power	CGO - 505	301314	5 MHz Step Comb Generator	NA	NA
1591	EMCI	CEAS	V4.1.1	Commercial Emissions Automation Software - 10 M#1	NA	NA

RADIATED EMISSIONS TEST DATA CONFIGURATION 2

Manufacturer:Pro V&VProject Number:PR079580Customer Representative:Stephen HanTest Area:10M #1

 Model:
 ClearAccess
 S/N:
 D18Q000334

 ELO
 ESY15E2
 AK7A044093A0

ELO ESY15E2 AK7A044093A0
OKI B432dn AS1721132721
APC SMT-2200

Standard Referenced: FCC Class B Date: May 11, 2018

Tampagathyre 22°C Hamility 250/

Temperature: 23°C Humidity: 25% Pressure: 831 mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Printing Ballots

Test Engineer: Mike Tidquist
PR079580-22-RE.doc FR0100

Type	Frequency (MHz)	Level (dBuV)	Transducer (dB/m)	Gain / Loss (dB)	Final (dBuV/m)	Azm(deg)/Pol/Hgt(m)	Margin: FCC Class B QP (dB)
QP	93.993	51.4	8.6	-31.0	29.0	82/H-Pole/4.00	4.06
QP	155.538	41.9	12.3	-30.6	23.6	264/V-Pole/1.01	9.49
QP	276.475	40.1	13.3	-30.2	23.1	285/H-Pole/2.82	12.40
QP	375.000	40.3	15.1	-30.0	25.4	197/H-Pole/2.33	10.12
QP	469.872	41.4	17.1	-29.7	28.7	176/V-Pole/2.90	6.80
QP	720.042	33.4	20.1	-28.7	24.8	146/H-Pole/1.01	10.76
QP	874.999	34.0	21.7	-27.9	27.8	31/V-Pole/1.87	7.72
OP	960.055	36.6	22.4	-27.5	31.5	0/H-Pole/3.52	11.93

Test Engineer:

Manufacturer: Pro V&V Project Number: PR079580 Stephen Han 10M #1 Customer Representative: Test Area:

ClearAccess S/N: D18Q000334 Model: **ELO** ESY15E2 AK7A044093A0 OKI B432dn AS1721132721

SMT-2200 APC Standard Referenced: FCC Class B Date: May 11, 2018 Humidity: _25% Pressure: 831 mb 23°C Temperature:

120Vac/60Hz Input Voltage: Configuration of Unit: **Printing Ballots**

Mike Tidquist PR079580-22-RE.doc FR0100

Type	Frequency	Level	Transducer	Gain / Loss		Azm(deg)/Pol/Hgt(m	9	Margin: FCC
	(MHz)	(dBuV)	(dB/m)	(dB)	(dBuV/m))	Class B >1GHz PK (dB)	Class B >1GHz AV (dB)
AV	1333.333	95.5	25.3	-70.1	50.7	12/V-Pole/1.00	1 K (ub)	3.22
PK	1333.333	98.3	25.3	-70.1	53.5	12/V-Pole/1.00	20.47	-
AV	1656.729	88.0	26.4	-70.5	43.9	138/V-Pole/1.00	-	10.07
PK	1656.729	98.8	26.4	-70.5	54.7	138/V-Pole/1.00	19.27	-
AV	1877.861	78.0	28.0	-70.9	35.0	225/H-Pole/1.00	-	18.93
PK	1877.861	92.6	28.0	-70.9	49.6	225/H-Pole/1.00	24.33	-
AV	4974.749	87.3	33.9	-75.2	46.0	179/V-Pole/1.39	-	7.99
PK	4974.749	94.2	33.9	-75.2	52.9	179/V-Pole/1.39	21.09	-
AV	10023.748	73.7	38.2	-67.6	44.2	176/V-Pole/1.56	-	9.76
PK	10023.748	82.5	38.2	-67.6	53.0	176/V-Pole/1.56	20.91	=
AV	17698.512	50.5	47.7	-58.8	39.5	315/H-Pole/1.00	-	14.51
PK	17698.512	63.6	47.7	-58.8	52.5	315/H-Pole/1.00	21.46	-

The highest emission measured was at 1333.333 MHz, which was 3.22 dB below the limit.

- "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
 - PK = Peak Measurement: RBW is 120kHz, VBW is 3 MHz
 - QP = Quasi-Peak Measurement: RBW is 120kHz, VBW is 3 MHz, and QP Detection is ENABLED
 - AV = Video Average Measurement: RBW is 1 MHz, VBW is 10 Hz
- The "Final" emissions level is attained by taking the "Level" and adding the "Transducer" factor and the "Gain/Loss" factor. Final measurements are made with the Azimuth, Polarity, Height, and EUT Cables positioned for maximum radiation. If applicable, cables positions are noted in the test log. (Sample Calculation: 49.6 dBuV + 11.4 dB/m - 28.8 dB = 32.2 dBuV/m. Important Note: This is a sample calculation only for the purpose of demonstration, and does not reflect data in this report.)
- The "Azm/Pol/Hgt" indicates the turn-table azimuth, the antenna polarity, and the antenna height where the maximum emissions level was measured.
- The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.
- The PRESCAN is a peak measurement and is performed with the RBW set to 120 kHz, VBW set to 3 MHz (30 MHz

to 1

GHz), and the RBW set to 1 MHz, VBW set to 100 kHz (> 1 GHz)

Pro V&V Manufacturer: Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess S/N: D18Q000334 Model: **ELO** ESY15E2 AK7A044093A0 OKI B432dn AS1721132721 APC SMT-2200 Standard Referenced: FCC Class B Date: May 11, 2018

PR079580-22-RE.doc

FR0100

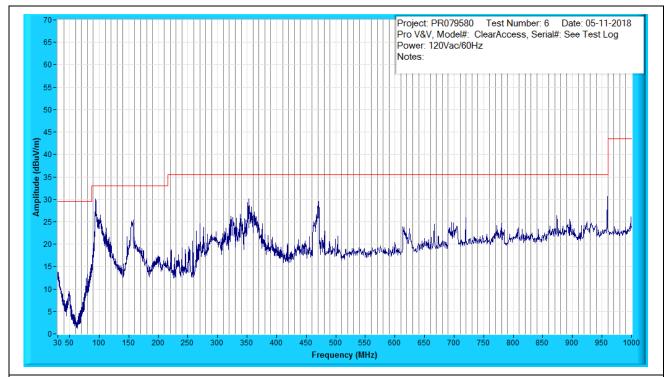


Figure A1: Radiated Emissions Prescan, 30MHz to 1000MHz, Peak Measurements at 10m Distance

Manufacturer: Pro V&V Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000334 Model: S/N: ESY15E2 AK7A044093A0 **ELO** OKI B432dn AS1721132721 APC SMT-2200

Standard Referenced: FCC Class B Date: May 11, 2018

PR079580-22-RE.doc FR0100

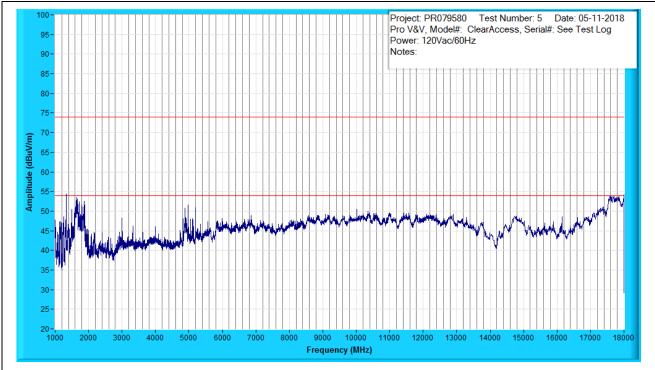


Figure A2: Radiated Emissions Prescan, 1GHz to 18GHz, Peak Measurements at 3m Distance

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000334 Model: S/N: ELO ESY15E2 AK7A044093A0 OKI B432dn AS1721132721 APC SMT-2200 Standard Referenced: FCC Class B Date: May 11, 2018

Figure A3: Radiated Emissions Test Setup – Front Side

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000334 Model: S/N: ELO ESY15E2 AK7A044093A0 OKI B432dn AS1721132721 SMT-2200 APC

Standard Referenced: FCC Class B Date: May 11, 2018
PR079580-22-RE.doc FR0100

 $Figure\ A4:\ Radiated\ Emissions\ Test\ Setup-Right\ Side$

PR079580 Manufacturer: Pro V&V Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000334 Model: S/N: ELO ESY15E2 AK7A044093A0 OKI B432dn AS1721132721 SMT-2200 APC Date: May 11, 2018 Standard Referenced: FCC Class B

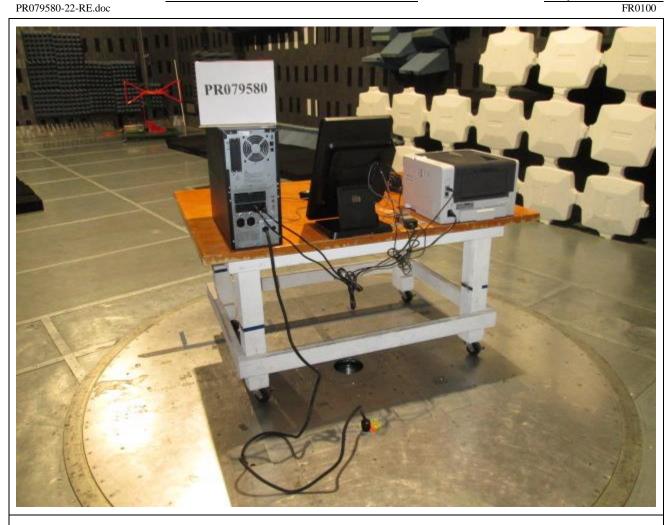


Figure A5: Radiated Emissions Test Setup – Back Side

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000334 Model: S/N: ELO ESY15E2 AK7A044093A0 OKI B432dn AS1721132721 SMT-2200 APC Date: May 11, 2018

Standard Referenced: FCC Class B

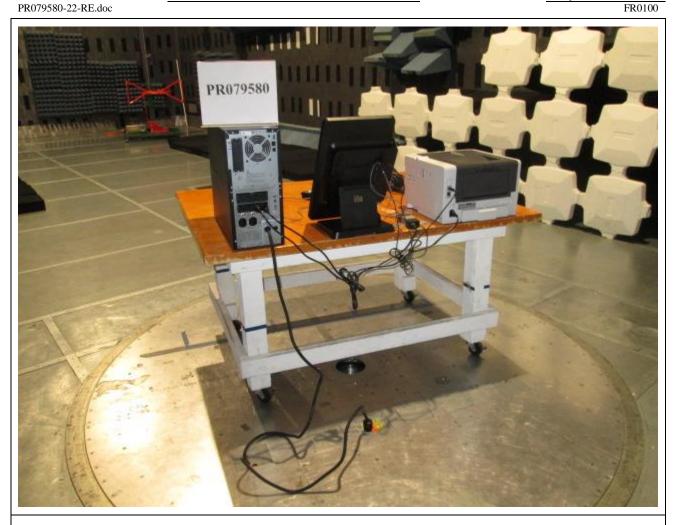


Figure A6: Radiated Emissions Test Setup – Left Side

PR079580 Manufacturer: Pro V&V Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000334 Model: S/N: ELO ESY15E2 AK7A044093A0 OKI B432dn AS1721132721

APC SMT-2200

Standard Referenced: FCC Class B Date: May 11, 2018

Figure A7: Radiated Emissions Test Setup – Front Side @ 3M

FR0100

Radiated Emissions, FCC Part 15

Manufacturer: Pro V&V Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 Model: ClearAccess S/N: D18Q000334 ELO ESY15E2 AK7A044093A0 OKI B432dn AS1721132721 SMT-2200 APC Date: May 11, 2018

Standard Referenced: FCC Class B PR079580-22-RE.doc

Test Equipment List

Test Equipment List								
ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due		
1219	Mini-Circuits	ZKL-2	062905	Preamp, 10 - 2000 MHz, 30 dB	03/02/2018	03/02/2019		
1229	Hewlett Packard	85685A	3010A01077	RF Preselector	02/09/2018	02/09/2019		
1232	Sunol Sciences	JB1	A071605-2	Bilog Antenna, 30 MHz to 2.0 GHz	06/20/2017	06/20/2018		
1233	Sunol Sciences	SC104V	110305-1	Positioning Controller	NA	NA		
1234	CIR Enterprises	10m Chamber	001	10m Chamber with 2.5m turntable	05/10/2017	06/10/2018		
1238	Sunol Sciences	TWR95-4	110305-3	Antenna Mast	NA	NA		
1239	Sunol Sciences	FM2522VS	110305-2	Turn Table, 2.5m Diameter	01/26/2018	01/26/2019		
1264	Hewlett Packard	85662A	2848A18247	Spectrum Analyzer Display	02/09/2018	02/09/2019		
1265	Hewlett Packard	85650A	2521A00641	Quasi-Peak Adapter	02/09/2018	02/09/2019		
1265	Hewlett Packard	85650A	2521A00641	Quasi-Peak Adapter	02/09/2018	02/09/2019		
1266	California Instruments	MX15-1	57961	AC Power Source, 0 - 300 VAC / 16 - 819 Hz / 15kVA	NA	NA		
1266	California Instruments	MX15-1	57961	AC Power Source, 0 - 300 VAC / 16 - 819 Hz / 15kVA	NA	NA		
1276	Ciao Wireless	CA118-3010	116, 117 and 118	1GHz to 18GHz Preamplifier, 70dB gain nominal	10/09/2017	10/09/2018		
1392	Sunol	DRH-118	A020311	1-18 GHz Double-Ridged Horn Antenna	12/07/2017	12/07/2018		
1552	EXTECH Instruments	445715	NA	Hygro-Thermometer	12/07/2017	12/07/2018		
1555	Com-Power	CGO - 505	301314	5 MHz Step Comb Generator	NA	NA		
1591	EMCI	CEAS	V4.1.1	Commercial Emissions Automation Software - 10 M#1	NA	NA		

RADIATED EMISSIONS TEST DATA CONFIGURATION 3

Manufacturer:Pro V&VProject Number:PR079580Customer Representative:Stephen HanTest Area:10M #1

 Model:
 ClearAccess
 S/N:
 D18Q000335

 ELO
 ESY20X2
 U64964A8N2

ELO ESY20X2 U64964A8N263531 Brother HL-L2350DW AS1721142050 APC SMT-2200

Standard Referenced: FCC Class B Date: May 11, 2018
Temperature: 24°C Humidity: 22% Pressure: 831mb

Temperature: 24°C Humidity: 22% Pressure: 831mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Printing Ballots
Test Engineer: Mike Tidquist

PR079580-22-RE.doc FR0100

Type	Frequency (MHz)	Level (dBuV)	Transducer (dB/m)	Gain / Loss (dB)	Final (dBuV/m)	Azm(deg)/Pol/Hgt(m)	Margin: FCC Class B QP (dB)
QP	82.703	35.4	7.5	-31.2	11.8	174/H-Pole/4.00	17.77
QP	104.304	48.7	11.5	-30.9	29.3	243/V-Pole/1.11	3.75
QP	163.089	39.5	12.2	-30.6	21.1	20/V-Pole/2.06	11.98
QP	276.480	35.0	13.3	-30.2	18.1	309/H-Pole/1.94	17.46
QP	307.199	38.3	13.4	-30.2	21.6	0/H-Pole/2.26	13.96
QP	585.397	26.1	18.8	-29.3	15.6	174/H-Pole/3.76	19.99
QP	839.954	28.5	21.1	-28.1	21.5	136/H-Pole/1.03	14.01
QP	960.058	38.2	22.4	-27.5	33.2	138/H-Pole/3.52	10.29

Manufacturer:Pro V&VProject Number:PR079580Customer Representative:Stephen HanTest Area:10M #1Model:Clear AccessS/N:D18 Q000335FLOFSY20Y21164064 A 8N262531

ELO ESY20X2 U64964A8N263531 Brother HL-L2350DW AS1721142050 APC SMT-2200

Standard Referenced: FCC Class B Date: May 11, 2018
Temperature: 24°C Humidity: 22% Pressure: 831mb

Temperature: 24°C Humidity: 22%

Input Voltage: 120Vac/60Hz

Configuration of Unit: Printing Ballots

Test Engineer: Mike Tidquist FR0100

FK0/93	00-22-KE.u0C							FK0100
Type	Frequency	Level	Transducer	Gain / Loss	Final	Azm(deg)/Pol/Hgt(m	Margin: FCC Class	Margin: FCC
	(MHz)	(dBuV)	(dB/m)	(dB)	(dBuV/m))	B > 1GHz PK (dB)	Class B >1GHz
	` ′	, ,	` /	, í	` ′	,	` ´	AV (dB)
AV	1500.160	91.4	25.5	-70.3	46.6	153/V-Pole/1.20	-	7.36
PK	1500.160	98.9	25.5	-70.3	54.1	153/V-Pole/1.20	19.86	-
AV	1673.388	88.9	26.5	-70.6	44.9	157/V-Pole/1.00	-	9.10
PK	1673.388	99.6	26.5	-70.6	55.6	157/V-Pole/1.00	18.40	-
AV	4974.744	86.5	33.9	-75.2	45.2	166/V-Pole/1.11	-	8.74
PK	4974.744	91.7	33.9	-75.2	50.4	160/V-Pole/1.11	23.59	-
AV	5197.514	87.8	34.3	-74.2	48.0	185/V-Pole/1.08	-	6.01
PK	5197.514	93.6	34.3	-74.2	53.7	185/V-Pole/1.08	20.26	-
AV	6000.097	81.3	35.6	-70.2	46.8	173/V-Pole/1.92	-	7.21
PK	6000.097	86.5	35.6	-70.2	51.9	173/V-Pole/1.92	22.06	=
AV	11457.651	63.0	39.0	-66.3	35.8	225/V-Pole/4.00	=	18.21
PK	11457.651	76.4	39.0	-66.3	49.1	225/V-Pole/4.00	24.81	=
AV	17695.249	50.6	47.6	-58.8	39.5	22/H-Pole/2.49	-	14.48
PK	17695.249	63.5	47.6	-58.8	52.3	22/H-Pole/2.49	21.63	-

The highest emission measured was at 104.304 MHz, which was 3.75 dB below the limit.

- "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
 - PK = Peak Measurement: RBW is 120kHz, VBW is 3 MHz
 - QP = Quasi-Peak Measurement: RBW is 120kHz, VBW is 3 MHz, and QP Detection is ENABLED
 - AV = Video Average Measurement: RBW is 1 MHz, VBW is 10 Hz
- ➤ The "Final" emissions level is attained by taking the "Level" and adding the "Transducer" factor and the "Gain/Loss" factor. Final measurements are made with the Azimuth, Polarity, Height, and EUT Cables positioned for maximum radiation. If applicable, cables positions are noted in the test log. (Sample Calculation: 49.6 dBuV + 11.4 dB/m − 28.8 dB = 32.2 dBuV/m. **Important Note**: This is a sample calculation only for the purpose of demonstration, and does not reflect data in this report.)
- > The "Azm/Pol/Hgt" indicates the turn-table *azimuth*, the antenna *polarity*, and the antenna *height* where the maximum emissions level was measured.
- The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.

>	The PRESCAN is a peak measurement and is performed with the RBW set to 120 kHz, VBW set to 3 MHz (30 MHz to 1 GHz), and the RBW set to 1 MHz, VBW set to 100 kHz ($>$ 1 GHz)

Pro V&V Manufacturer: Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess S/N: D18Q000335 Model: ELO ESY20X2 U64964A8N263531 Brother HL-L2350DW AS1721142050 APC SMT-2200 FCC Class B Date: May 11, 2018

Standard Referenced: PR079580-22-RE.doc

FR0100

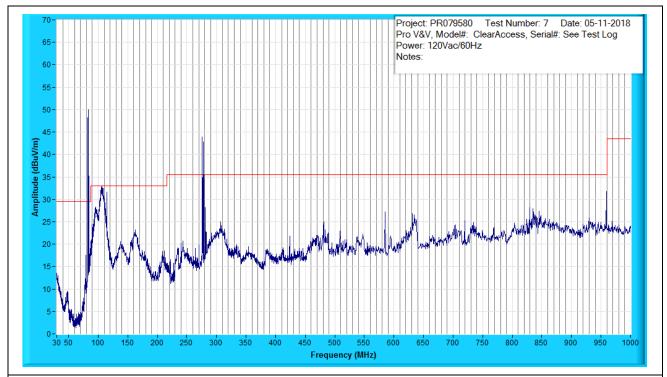


Figure A1: Radiated Emissions Prescan, 30MHz to 1000MHz, Peak Measurements at 10m Distance

Manufacturer: Pro V&V Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000335 Model: S/N: U64964A8N263531 **ELO** ESY20X2 Brother HL-L2350DW AS1721142050 APC SMT-2200

Standard Referenced: FCC Class B Date: May 11, 2018

PR079580-22-RE.doc FR0100

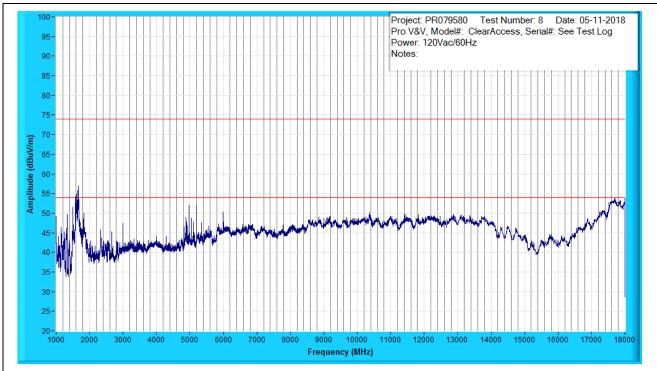


Figure A2: Radiated Emissions Prescan, 1GHz to 18 GHz, Peak Measurements at 3m Distance

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000335 Model: S/N: ELO ESY20X2 U64964A8N263531 Brother HL-L2350DW AS1721142050 APC SMT-2200

Standard Referenced: FCC Class B Date: May 11, 2018

PR079580-22-RE.doc

Figure A3: Radiated Emissions Test Setup – Front Side

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000335 Model: S/N: ELO ESY20X2 U64964A8N263531 Brother HL-L2350DW AS1721142050

Standard Referenced: APC SMT-2200
FCC Class B Date: May 11, 2018

Standard Referenced: FCC Class B
PR079580-22-RE.doc

Figure A4: Radiated Emissions Test Setup – Right Side

FR0100

Radiated Emissions, FCC Part 15

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000335 Model: S/N: ELO ESY20X2 U64964A8N263531 Brother HL-L2350DW AS1721142050 SMT-2200 APC

Standard Referenced: FCC Class B Date: May 11, 2018
PR079580-22-RE.doc

PR079580

Figure A5: Radiated Emissions Test Setup – Back Side

PR079580 Manufacturer: Pro V&V Project Number: Customer Representative: Stephen Han Test Area: 10M #1 Model:

ClearAccess D18Q000335 S/N: ELO ESY20X2 U64964A8N263531 Brother HL-L2350DW AS1721142050 SMT-2200 APC

Standard Referenced: FCC Class B Date: May 11, 2018

PR079580-22-RE.doc

Figure A6: Radiated Emissions Test Setup – Left Side

AS1721142050

Radiated Emissions, FCC Part 15

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess S/N: D18Q000335 Model: U64964A8N263531

ELO ESY20X2 Brother HL-L2350DW SMT-2200 APC

Standard Referenced: FCC Class B Date: May 11, 2018

PR079580-22-RE.doc

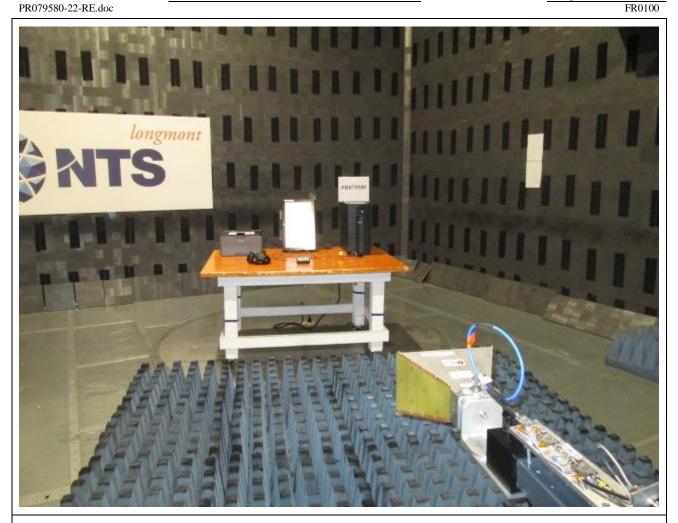


Figure A7: Radiated Emissions Test Setup – Front Side @ 3M

FR0100

Radiated Emissions, FCC Part 15

Manufacturer: Pro V&V Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 Model: ClearAccess S/N: D18Q000335 ELO ESY20X2 U64964A8N263531 Brother HL-L2350DW AS1721142050 ${\sf APC}$ SMT-2200 Standard Referenced: FCC Class B Date: May 11, 2018

PR079580-22-RE.doc

Test Equipment List

			rest Equip				
ID	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due	
Number							
1219	Mini-Circuits	ZKL-2	062905	Preamp, 10 - 2000 MHz, 30 dB	03/02/2018	03/02/2019	
1229	Hewlett Packard	85685A	3010A01077	RF Preselector	02/09/2018	02/09/2019	
1232	Sunol Sciences	JB1	A071605-2	Bilog Antenna, 30 MHz to 2.0 GHz	06/20/2017	06/20/2018	
1233	Sunol Sciences	SC104V	110305-1	Positioning Controller	NA	NA	
1234	CIR Enterprises	10m Chamber	001	10m Chamber with 2.5m turntable	05/10/2017	0610/2018	
1238	Sunol Sciences	TWR95-4	110305-3	Antenna Mast	NA	NA	
1239	Sunol Sciences	FM2522VS	110305-2	Turn Table, 2.5m Diameter	01/26/2018	01/26/2019	
1264	Hewlett Packard	85662A	2848A18247	Spectrum Analyzer Display	02/09/2018	02/09/2019	
1265	Hewlett Packard	85650A	2521A00641	Quasi-Peak Adapter	02/09/2018	02/09/2019	
1265	Hewlett Packard	85650A	2521A00641	Quasi-Peak Adapter	02/09/2018	02/09/2019	
1266	California Instruments	MX15-1	57961	AC Power Source, 0 - 300 VAC / 16 - 819 Hz / 15kVA	NA	NA	
1266	California Instruments	MX15-1	57961	AC Power Source, 0 - 300 VAC / 16 - 819 Hz / 15kVA	NA	NA	
1276	Ciao Wireless	CA118-3010	116, 117 and 118	1GHz to 18GHz Preamplifier, 70dB gain nominal	10/09/2017	10/09/2018	
1392	Sunol	DRH-118	A020311	1-18 GHz Double-Ridged Horn Antenna	12/07/2017	12/07/2018	
1552	EXTECH Instruments	445715	NA	Hygro-Thermometer	12/07/2017	12/07/2018	
1555	Com-Power	CGO - 505	301314	5 MHz Step Comb Generator	NA	NA	
1591	EMCI	CEAS	V4.1.1	Commercial Emissions Automation Software - 10 M#1	NA	NA	

RADIATED EMISSIONS TEST DATA CONFIGURATION 4

Manufacturer: Pro V&V Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1

ClearAccess S/N: A18C004071 Model: ELO ESY20X2 AK7A044083A0

OKI B432dn AS1721132721 APC SMT-2200

FCC Class B Standard Referenced: Date: May 14, 2018

Temperature: 20°C Humidity: 48% Pressure: 839 mb Input Voltage: 120Vac/60Hz

Configuration of Unit: Printing Ballots

Test Engineer: Mike Tidquist PR079580-22-RE.doc

	1000 2		Transc Transca				
PR0795	80-22-RE.doc						FR0100
Type	Frequency (MHz)	Level (dBuV)	Transducer (dB/m)	Gain / Loss (dB)	Final (dBuV/m)	Azm(deg)/Pol/Hgt(m)	Margin: FCC Class B QP (dB)
QP	70.348	52.0	8.2	-31.1	29.1	159/V-Pole/3.65	0.43
QP	73.944	52.5	8.1	-31.2	29.4	150/V-Pole/3.47	0.15
QP	266.669	43.8	12.9	-30.2	26.4	2/H-Pole/2.88	9.16
QP	324.998	38.2	13.9	-30.1	22.0	93/H-Pole/3.56	13.52
QP	528.000	43.7	18.3	-29.6	32.4	178/H-Pole/1.57	3.10
QP	666.624	39.1	19.3	-28.9	29.5	216/H-Pole/1.31	6.05
QP	874.995	35.6	21.7	-27.9	29.4	3/H-Pole/1.00	6.14
QP	999.994	28.0	22.9	-27.6	23.3	227/V-Pole/3.86	20.14

Manufacturer:Pro V&VProject Number:PR079580Customer Representative:Stephen HanTest Area:10M #1Model:Clear AccessS/N:A18C004071

ELO ESY20X2 AK7A044083A0
OKI B432dn AS1721132721
APC SMT-2200

Standard Referenced: FCC Class B Date: May 14, 2018
Temperature: 20°C Humidity: 48% Pressure: 839 mb

Input Voltage: 120Vac/60Hz
Configuration of Unit: Printing Ballots
Test Engineer: Mike Tidquist

PR079580-22-RE.doc FR0100

Type	Frequency (MHz)	Level (dBuV)	Transducer (dB/m)	Gain / Loss (dB)	Final (dBuV/m)	Azm(deg)/Pol/Hgt(m)	Margin: FCC Class B >1GHz PK (dB)	Margin: FCC Class B >1GHz
	,	()		(")	(,	,		AV (dB)
AV	1584.000	93.6	25.8	-70.4	49.0	161/V-Pole/2.52	-	4.91
PK	1584.000	96.1	25.8	-70.4	51.5	161/V-Pole/2.52	22.41	-
AV	2333.299	76.5	29.1	-71.1	34.4	160/H-Pole/1.00	-	19.55
PK	2333.299	93.4	29.1	-71.1	51.4	160/H-Pole/1.00	22.60	-
AV	3000.033	84.8	30.9	-71.0	44.7	220/V-Pole/1.06	=	9.25
PK	3000.033	90.7	30.9	-71.0	50.6	220/V-Pole/1.06	23.35	=
AV	9182.828	66.3	38.1	-68.5	36.0	22/H-Pole/1.00	=	18.00
PK	9182.828	79.7	38.1	-68.5	49.3	22/H-Pole/1.00	24.65	=
AV	12283.412	65.5	40.0	-69.5	36.1	292/V-Pole/2.50	=	17.87
PK	12283.412	79.2	40.0	-69.5	49.7	292/V-Pole/2.50	24.22	=
AV	17677.294	50.4	47.5	-59.0	38.9	68/H-Pole/1.00	-	15.09
PK	17677.294	63.0	47.5	-59.0	51.5	68/H-Pole/1.00	22.49	-

The highest emission measured was at 73.994 MHz, which was 0.15 dB below the limit.

- > "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
 - PK = Peak Measurement: RBW is 120kHz, VBW is 3 MHz
 - QP = Quasi-Peak Measurement: RBW is 120kHz, VBW is 3 MHz, and QP Detection is ENABLED
 - AV = Video Average Measurement: RBW is 1 MHz, VBW is 10 Hz
- ➤ The "Final" emissions level is attained by taking the "Level" and adding the "Transducer" factor and the "Gain/Loss" factor. Final measurements are made with the Azimuth, Polarity, Height, and EUT Cables positioned for maximum radiation. If applicable, cables positions are noted in the test log. (Sample Calculation: 49.6 dBuV + 11.4 dB/m − 28.8 dB = 32.2 dBuV/m. **Important Note**: This is a sample calculation only for the purpose of demonstration, and does not reflect data in this report.)
- The "Azm/Pol/Hgt" indicates the turn-table *azimuth*, the antenna *polarity*, and the antenna *height* where the maximum emissions level was measured.
- > The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.
- The PRESCAN is a peak measurement and is performed with the RBW set to 120 kHz, VBW set to 3 MHz (30 MHz)

to 1

 \succ GHz), and the RBW set to 1 MHz, VBW set to 100 kHz (> 1 GHz)

Pro V&V Manufacturer: Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess S/N: A18C004071 Model: **ELO** ESY20X2 AK7A044083A0 OKI B432dn AS1721132721 APC SMT-2200 Standard Referenced: FCC Class B Date: May 14, 2018

PR079580-22-RE.doc

Project: PR079580 Test Number: 11 Date: 05-14-2018 Pro V&V, Model#: ClearAccess, Serial#: See Test Log Power: 120Vac/60Hz Notes:

| Comparison of the comp

Figure A1: Radiated Emissions Prescan, 30MHz to 1000MHz, Peak Measurements at 10m Distance

Frequency (MHz)

700

Manufacturer: Pro V&V Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess A18C004071 Model: S/N: ESY20X2 AK7A044083A0 **ELO** OKI B432dn AS1721132721 APC SMT-2200

Standard Referenced: FCC Class B Date: May 14, 2018
PR079580-22-RE.doc

100-95-90-90-100

Figure A2: Radiated Emissions Prescan, 1GHz to 18GHz, Peak Measurements at 3m Distance

FR0100

Radiated Emissions, FCC Part 15

PR079580 Manufacturer: Pro V&V Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess A18C004071 Model: S/N: ELO ESY20X2 AK7A044083A0 OKI B432dn AS1721132721 APC SMT-2200

Standard Referenced: FCC Class B Date: May 14, 2018
PR079580-22-RE.doc

Figure A3: Radiated Emissions Test Setup – Front Side

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess A18C004071 Model: S/N: ELO ESY20X2 AK7A044083A0 OKI B432dn AS1721132721 SMT-2200 APC

Standard Referenced: FCC Class B Date: May 14, 2018

PR079580-22-RE.doc

Figure A4: Radiated Emissions Test Setup – Right Side

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess S/N: A18C004071 Model: ELO ESY20X2 AK7A044083A0 OKI B432dn AS1721132721 SMT-2200 APC Date: May 14, 2018 Standard Referenced: FCC Class B

Figure A5: Radiated Emissions Test Setup – Back Side

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess S/N: A18C004071 Model: ELO ESY20X2 AK7A044083A0 OKI B432dn AS1721132721 APC SMT-2200

Standard Referenced: FCC Class B Date: May 14, 2018

PR079580-22-RE.doc

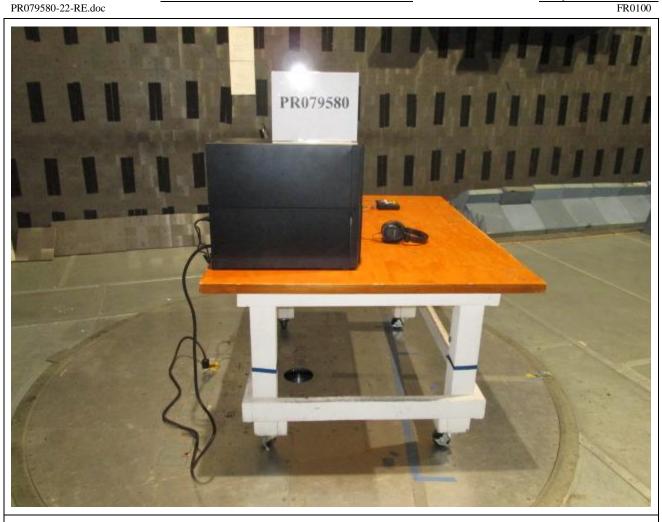


Figure A6: Radiated Emissions Test Setup – Left Side

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 Model: ClearAccess S/N: A18C004071 ELO ESY20X2 AK7A044083A0 OKI B432dn AS1721132721 SMT-2200 APC

Standard Referenced: FCC Class B Date: May 14, 2018

PR079580-22-RE.doc

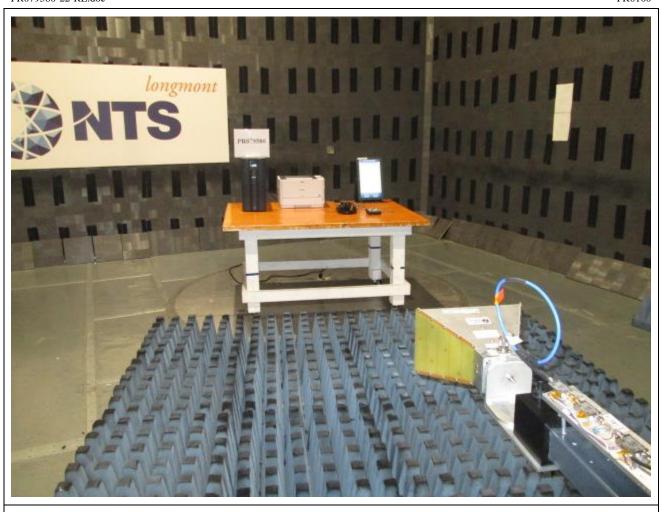


Figure A7: Radiated Emissions Test Setup – Front Side @ 3M

FR0100

PR079580-22-RE.doc

Radiated Emissions, FCC Part 15

Manufacturer: Pro V&V Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 Model: ClearAccess S/N: A18C004071 ELO ESY20X2 AK7A044083A0 OKI B432dn AS1721132721 SMT-2200 ${\sf APC}$ Standard Referenced: FCC Class B Date: May 14, 2018

Test Equipment List

Test Equipment List										
ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due				
1219	Mini-Circuits	ZKL-2	062905	Preamp, 10 - 2000 MHz, 30 dB	03/02/2018	03/02/2019				
1229	Hewlett Packard	85685A	3010A01077	RF Preselector	02/09/2018	02/09/2019				
1232	Sunol Sciences	JB1	A071605-2	Bilog Antenna, 30 MHz to 2.0 GHz	06/20/2017	06/20/2018				
1233	Sunol Sciences	SC104V	110305-1	Positioning Controller	NA	NA				
1234	CIR Enterprises	10m Chamber	001	10m Chamber with 2.5m turntable	05/10/2017	06/10/2018				
1238	Sunol Sciences	TWR95-4	110305-3	Antenna Mast	NA	NA				
1239	Sunol Sciences	FM2522VS	110305-2	Turn Table, 2.5m Diameter	01/26/2018	01/26/2019				
1264	Hewlett Packard	85662A	2848A18247	Spectrum Analyzer Display	02/09/2018	02/09/2019				
1265	Hewlett Packard	85650A	2521A00641	Quasi-Peak Adapter	02/09/2018	02/09/2019				
1265	Hewlett Packard	85650A	2521A00641	Quasi-Peak Adapter	02/09/2018	02/09/2019				
1266	California Instruments	MX15-1	57961	AC Power Source, 0 - 300 VAC / 16 - 819 Hz / 15kVA	NA	NA				
1266	California Instruments	MX15-1	57961	AC Power Source, 0 - 300 VAC / 16 - 819 Hz / 15kVA	NA	NA				
1276	Ciao Wireless	CA118-3010	116, 117 and 118	1GHz to 18GHz Preamplifier, 70dB gain nominal	10/09/2017	10/09/2018				
1392	Sunol	DRH-118	A020311	1-18 GHz Double-Ridged Horn Antenna	12/07/2017	12/07/2018				
1552	EXTECH Instruments	445715	NA	Hygro-Thermometer	12/07/2017	12/07/2018				
1555	Com-Power	CGO - 505	301314	5 MHz Step Comb Generator	NA	NA				
1591	EMCI	CEAS	V4.1.1	Commercial Emissions Automation Software - 10 M#1	NA	NA				

APPENDIX B - CONDUCTED EMISSIONS TEST DATA CONFIGURATION 1

 Manufacturer:
 Pro V & V
 Project Number:
 PR079580

 Customer Representative:
 Stephen Han
 Test Area:
 10M #1

 Model:
 Clear Access
 S/N:
 A18C004079

 ClearAccess
 S/N:
 A18C004079

 ELO
 ESY15E2
 U64964AN263525

 But the 10250DW
 A61622220062

Brother HL-L2350DW AS1638230963 APC SMT-2200

Standard Referenced: FCC Class B Date: May 8, 2018

Temperature: 27°C Humidity: 29% Pressure: 841 mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Printing Ballots

Test Engineer: Mike Tidquist

PR079580-22-CE doc FR0100

Type	Frequency (MHz)	Level (dBuV)	Transducer (dB)	Gain / Loss (dB)	Final (dBuV)	Test Point	Margin: FCC Class B AV (dB)	Margin: FCC Class B QP (dB)
AV	0.156	34.8	-1.4	16.0	49.4	Line 1	6.38	-
QP	0.156	40.6	-1.4	16.0	55.3	Line 1	-	10.54
AV	0.190	28.9	-1.2	16.1	43.8	Line 1	11.04	-
QP	0.190	38.7	-1.2	16.1	53.6	Line 1	-	11.25
AV	0.221	30.6	-1.0	16.1	45.7	Line 1	8.30	-
QP	0.221	35.9	-1.0	16.1	51.1	Line 1	-	12.92
AV	1.374	15.6	-0.3	16.1	31.4	Line 1	14.58	-
QP	1.374	25.0	-0.3	16.1	40.8	Line 1	-	15.17
AV	3.048	4.2	-0.3	16.2	20.1	Line 1	25.90	-
QP	3.048	13.1	-0.3	16.2	29.0	Line 1	-	27.00
AV	9.220	8.9	-0.3	16.1	24.7	Line 1	25.31	-
QP	9.220	17.7	-0.3	16.1	33.5	Line 1	-	26.53
AV	0.159	34.4	-1.3	16.0	49.1	Neutral	6.65	-
QP	0.159	40.1	-1.3	16.0	54.8	Neutral	-	10.92
AV	0.176	30.2	-1.2	16.1	45.0	Neutral	10.23	-
QP	0.176	34.0	-1.2	16.1	48.9	Neutral	-	16.38
AV	0.199	28.3	-1.1	16.1	43.3	Neutral	11.30	-
QP	0.199	30.9	-1.1	16.1	45.9	Neutral	-	18.65
AV	0.299	24.1	-0.7	16.1	39.5	Neutral	12.22	-
QP	0.299	27.5	-0.7	16.1	42.9	Neutral	-	18.83
AV	1.374	17.4	-0.3	16.1	33.3	Neutral	12.73	-
QP	1.374	25.5	-0.3	16.1	41.3	Neutral	-	14.68
AV	8.980	7.7	-0.3	16.1	23.5	Neutral	26.50	-
QP	8.980	18.2	-0.3	16.1	34.0	Neutral	-	25.96

The highest emission measured was at 0.156 MHz, which was 6.38 dB below the limit.

- > "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
 - PK = Peak Measurement: RBW is 9 kHz, VBW is 3 MHz
 - QP = Quasi-Peak Measurement: RBW is 9 kHz, VBW is 3 MHz, and QP Detection is ENABLED
 - AV = Video Average Measurement: RBW is 9 kHz, VBW is 10 Hz
- > The "Final" emissions level is attained by taking the "Level" and adding the "Transducer" factor and the "Gain/Loss" factor. (Sample Calculation: 40.2 dBuV + 1.6 dB + 16.3 dB = 58.1 dBuV. **Important Note**: This is a sample calculation only for the purpose of demonstration, and does not reflect data in this report.)
- The "TestPoint" indicates which AC or DC input power line or which I/O cable the measurement was made on.
- The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.
- > The PRESCAN is a peak measurement and is performed with the RBW set to 9 kHz, and the VBW set to 3 MHz

Pro V&V Manufacturer: Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess A18C004079 Model: S/N: ELO ESY15E2 U64964AN263525 Brother HL-L2350DW AS1638230963 APC SMT-2200 Standard Referenced: FCC Class B Date: May 8, 2018

Figure B1: Conducted Emissions Prescan, Line 1, 0.150MHz to 30MHz, Peak Measurements

Manufacturer: Pro V&V Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess A18C004079 Model: S/N: ELO U64964AN263525 ESY15E2 Brother HL-L2350DW AS1638230963 APC SMT-2200 Standard Referenced:

FCC Class B Date: May 8, 2018

PR079580-22-CE.doc Project: PR079580 Test Number: 3 Date: 05-08-2018 Pro V&V, Model#: ClearAccess, Serial#: See Test Log 95 Power: 120Vac/60Hz Notes: 90 80-Amplitude (dBuV) 30-25-20 10.0 Frequency (MHz)

Figure B2: Conducted Emissions Prescan, Neutral, 0.150MHz to 30MHz, Peak Measurements

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess S/N: A18C004079 Model: ELO ESY15E2 U64964AN263525 Brother HL-L2350DW AS1638230963

SMT-2200 APC Standard Referenced: FCC Class B Date: May 8, 2018

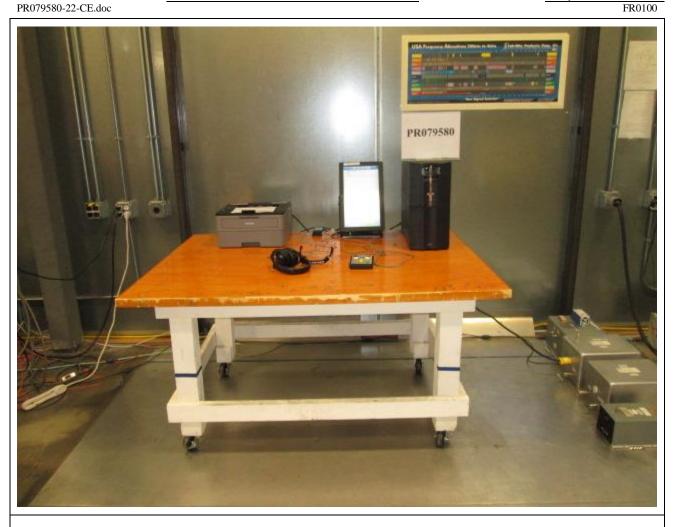


Figure B3: Conducted Emissions Test Setup – Front Side

Manufacturer:Pro V&VProject Number:PR079580Customer Representative:Stephen HanTest Area:10M #1Model:Clear AccessS/N:A18C004079

ELO ESY15E2 U64964AN263525
Brother HL-L2350DW AS1638230963
APC SMT-2200

Standard Referenced: FCC Class B Date: May 8, 2018

PR079580-22-CE.doc FR0100

Figure B4: Conducted Emissions Test Setup – Right Side

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess A18C004079 Model: S/N: ELO ESY15E2 U64964AN263525 Brother HL-L2350DW AS1638230963 SMT-2200 APC

Standard Referenced: FCC Class B Date: May 8, 2018

PR079580-22-CE.doc

Figure B5: Conducted Emissions Test Setup – Back Side

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess S/N: A18C004079 Model: ELO ESY15E2 U64964AN263525 Brother HL-L2350DW AS1638230963 SMT-2200 APC

Standard Referenced: FCC Class B Date: May 8, 2018
PR079580-22-CE.doc

PR079580-22-CE.doc FR0100

Figure B6: Conducted Emissions Test Setup – Left Side

FR0100

PR079580-22-CE.doc

Conducted Emissions, FCC Part 15

Pro V&V Manufacturer: Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 Model: ClearAccess S/N: A18C004079 ELO ESY15E2 U64964AN263525 Brother HL-L2350DW AS1638230963 APC SMT-2200 Standard Referenced: FCC Class B Date: May 8, 2018

Test Equipment List

Test Equipment Dist									
ID	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due			
Number									
1017	Pacific Power	TMX 140	0256	4 kVA, 50 Hz Power Source	NA	NA			
1200	Agilent	11947A	3107A03807	Transient Limiter, 9 kHz to 200	11/27/2017	11/27/2018			
	Technology			MHz					
1213	Solar	7930-100	885210	High Pass Filter, fc: 100kHz, -	02/07/2018	02/07/2019			
				100dB @ 33kHz					
1229	Hewlett	85685A	3010A01077	RF Preselector	02/09/2018	02/09/2019			
	Packard								
1245	Fluke	87V	91600341	True RMS MultiMeter with Temp	06/23/2017	06/23/2018			
1263	Hewlett	8566B	2747A05127	Spectrum Analyzer, 100 Hz to 22	02/09/2018	02/09/2019			
	Packard			GHz					
1264	Hewlett	85662A	2848A18247	Spectrum Analyzer Display	02/09/2018	02/09/2019			
	Packard								
1265	Hewlett	85650A	2521A00641	Quasi-Peak Adapter	02/09/2018	02/09/2019			
	Packard								
1332	Com-Power	CGC-510	311636	Conducted Comb Generator	NA	NA			
1538	Extech	445715	Z315812	Hygro-Thermometer	05/09/2017	05/09/2018			
	Instruments								
1557	EMCI	EMCI, 2 Phase	11	150 kHz to 30 MHz, 277 Vac/400	02/22/2018	02/22/2019			
		LISN		Vdc, 50/60 Hz, 16 A					
1591	EMCI	CEAS	V4.1.1	Commercial Emissions	NA	NA			
				Automation Software - 10 M#1					

CONDUCTED EMISSIONS TEST DATA CONFIGURATION 2

Manufacturer:Pro V&VProject Number:PR079580Customer Representative:Stephen HanTest Area:10M #1

 Model:
 ClearAccess
 S/N:
 D18Q000334

 ELO
 ESY15E2
 AK7A044093A0

 OKI
 B432dn
 AS1721132721

APC SMT-2200

Standard Referenced: FCC Class B

Tamperature: 26°C Humidity: 30%

Pressure: 831 mb

Temperature: 26°C Humidity: 30% Pressure: 831 mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Printing Ballots
Test Engineer: Mike Tidquist

PR079580-22-CE.doc FR0100

	50-22-CL.doc							110100
Type	Frequency (MHz)	Level (dBuV)	Transducer (dB)	Gain / Loss (dB)	Final (dBuV)	Test Point	Margin: FCC Class B AV (dB)	Margin: FCC Class B QP (dB)
AV	0.162	32.4	-1.3	16.0	47.0	Line 1	8.62	-
QP	0.162	40.3	-1.3	16.0	55.0	Line 1	-	10.71
AV	0.187	29.2	-1.2	16.1	44.2	Line 1	10.79	-
QP	0.187	37.6	-1.2	16.1	52.5	Line 1	-	12.48
AV	0.209	20.6	-1.0	16.1	35.7	Line 1	18.60	-
QP	0.209	34.4	-1.0	16.1	49.4	Line 1	-	14.88
AV	0.238	18.9	-0.9	16.1	34.1	Line 1	19.33	-
QP	0.238	26.7	-0.9	16.1	41.9	Line 1	-	21.62
AV	1.346	15.8	-0.3	16.1	31.7	Line 1	14.33	-
QP	1.346	22.7	-0.3	16.1	38.5	Line 1	-	17.51
AV	2.967	2.6	-0.3	16.2	18.5	Line 1	27.50	-
QP	2.967	11.1	-0.3	16.2	27.0	Line 1	-	28.97
AV	9.345	12.1	-0.3	16.0	27.8	Line 1	22.18	-
QP	9.345	17.9	-0.3	16.0	33.7	Line 1	-	26.35
AV	0.151	37.1	-1.4	16.0	51.8	Neutral	4.21	-
QP	0.151	41.8	-1.4	16.0	56.4	Neutral	-	9.60
AV	0.174	29.2	-1.3	16.0	44.0	Neutral	11.33	-
QP	0.174	37.8	-1.3	16.0	52.6	Neutral	-	12.77
AV	0.201	28.8	-1.1	16.1	43.8	Neutral	10.73	ı
QP	0.201	36.7	-1.1	16.1	51.7	Neutral	=	12.81
AV	0.216	23.2	-1.0	16.1	38.3	Neutral	15.82	-
QP	0.216	32.6	-1.0	16.1	47.7	Neutral	=	16.46
AV	1.307	14.5	-0.3	16.1	30.3	Neutral	15.69	-
QP	1.307	22.2	-0.3	16.1	38.0	Neutral	-	17.99
AV	9.142	12.1	-0.3	16.1	27.9	Neutral	22.14	=
QP	9.142	19.0	-0.3	16.1	34.8	Neutral	-	25.25
AV	15.753	5.3	-0.3	15.7	20.7	Neutral	29.30	-
QP	15.753	11.0	-0.3	15.7	26.3	Neutral	-	33.68

The highest emission measured was at 0.151 MHz, which was 4.21 dB below the limit.

- > "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
 - PK = Peak Measurement: RBW is 9 kHz, VBW is 3 MHz
 - QP = Quasi-Peak Measurement: RBW is 9 kHz, VBW is 3 MHz, and QP Detection is ENABLED
 - AV = Video Average Measurement: RBW is 9 kHz, VBW is 10 Hz
- > The "Final" emissions level is attained by taking the "Level" and adding the "Transducer" factor and the "Gain/Loss" factor. (Sample Calculation: 40.2 dBuV + 1.6 dB + 16.3 dB = 58.1 dBuV. **Important Note**: This is a sample calculation only for the purpose of demonstration, and does not reflect data in this report.)
- The "TestPoint" indicates which AC or DC input power line or which I/O cable the measurement was made on.
- The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.
- > The PRESCAN is a peak measurement and is performed with the RBW set to 9 kHz, and the VBW set to 3 MHz

Pro V&V Manufacturer: Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 Model: ClearAccess S/N: D18Q000334 **ELO** ESY15E2 AK7A044093A0 OKI B432dn AS1721132721 APC SMT-2200 FCC Class B Date: May 11, 2018

Standard Referenced:

PR079580-22-CE.doc

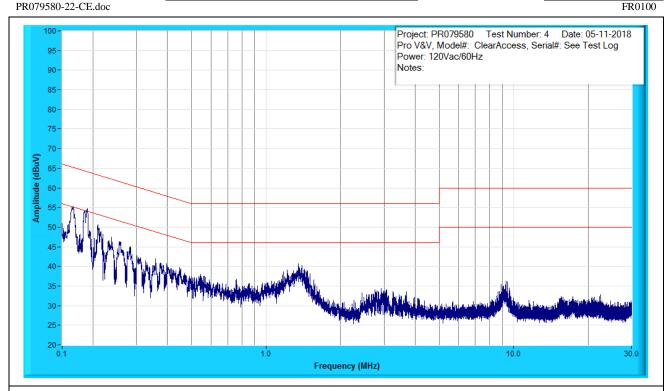


Figure B1: Conducted Emissions Prescan, Line 1, 0.150MHz to 30MHz, Peak Measurements

Manufacturer: Pro V&V Project Number: PR079580 Test Area: Customer Representative: Stephen Han 10M #1 ClearAccess D18Q000334 Model: S/N: ESY15E2 AK7A044093A0 **ELO** OKI B432dn AS1721132721 APC SMT-2200

Standard Referenced: FCC Class B Date: May 11, 2018

PR079580-22-CE.doc

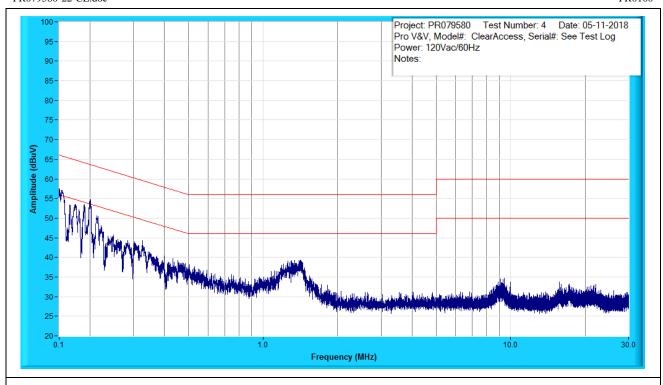


Figure B2: Conducted Emissions Prescan, Neutral, 0.150MHz to 30MHz, Peak Measurements

FR0100

Conducted Emissions, FCC Part 15

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000334 Model: S/N: ELO ESY15E2 AK7A044093A0 OKI B432dn AS1721132721 SMT-2200 APC Date: May 11, 2018

Standard Referenced: FCC Class B PR079580-22-CE.doc

Figure B3: Conducted Emissions Test Setup – Front Side

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000334 Model: S/N: ELO ESY15E2 AK7A044093A0 OKI

B432dn AS1721132721 SMT-2200 APC

Standard Referenced: FCC Class B Date: May 11, 2018

PR079580-22-CE.doc

Figure B4: Conducted Emissions Test Setup – Right Side

FR0100

Conducted Emissions, FCC Part 15

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000334 Model: S/N: ELO ESY15E2 AK7A044093A0 OKI B432dn AS1721132721 SMT-2200 APC

Standard Referenced: FCC Class B Date: May 11, 2018

PR079580-22-CE.doc

Figure B5: Conducted Emissions Test Setup – Back Side

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000334 Model: S/N: ELO ESY15E2 AK7A044093A0 OKI B432dn AS1721132721 SMT-2200 APC

Standard Referenced: FCC Class B Date: May 11, 2018

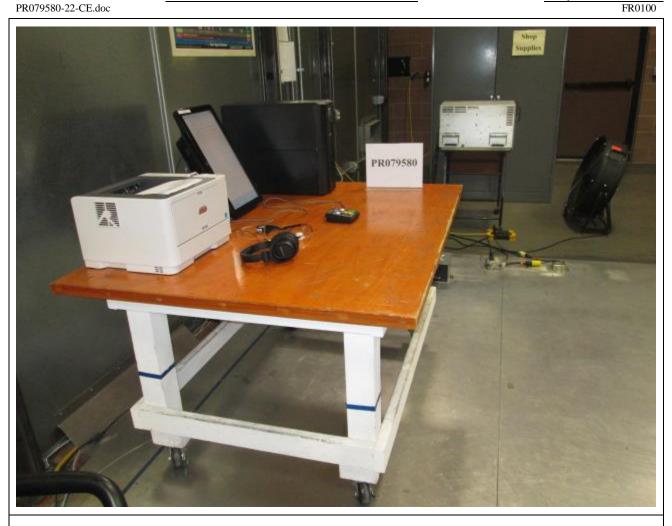


Figure B6: Conducted Emissions Test Setup – Left Side

Pro V&V Manufacturer: Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 Model: ClearAccess S/N: D18Q000334 ELO ESY15E2 AK7A044093A0 OKI B432dn AS1721132721 SMT-2200 APC Standard Referenced: FCC Class B Date: May 11, 2018 PR079580-22-CE.doc FR0100

Test Equipment List

			~		~	~
ID	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
Number						
1017	Pacific Power	TMX 140	0256	4 kVA, 50 Hz Power Source	NA	NA
1200	Agilent	11947A	3107A03807	Transient Limiter, 9 kHz to 200	11/27/2017	11/27/2018
	Technology			MHz		
1213	Solar	7930-100	885210	High Pass Filter, fc: 100kHz, -	02/07/2018	02/07/2019
				100dB @ 33kHz		
1229	Hewlett	85685A	3010A01077	RF Preselector	02/09/2018	02/09/2019
	Packard					
1245	Fluke	87V	91600341	True RMS MultiMeter with Temp	06/23/2017	06/23/2018
1263	Hewlett	8566B	2747A05127	Spectrum Analyzer, 100 Hz to 22	02/09/2018	02/09/2019
	Packard			GHz		
1264	Hewlett	85662A	2848A18247	Spectrum Analyzer Display	02/09/2018	02/09/2019
	Packard					
1265	Hewlett	85650A	2521A00641	Quasi-Peak Adapter	02/09/2018	02/09/2019
	Packard					
1332	Com-Power	CGC-510	311636	Conducted Comb Generator	NA	NA
1552	EXTECH	445715	NA	Hygro-Thermometer	12/07/2017	12/07/2018
	Instruments					
1557	EMCI	EMCI, 2 Phase	11	150 kHz to 30 MHz, 277 Vac/400	02/22/2018	02/22/2019
		LISN		Vdc, 50/60 Hz, 16 A		
1591	EMCI	CEAS	V4.1.1	Commercial Emissions	NA	NA
				Automation Software - 10 M#1		

CONDUCTED EMISSIONS TEST DATA CONFIGURATION 3

Manufacturer:Pro V&VProject Number:PR079580Customer Representative:Stephen HanTest Area:10M #1

 Model:
 ClearAccess
 S/N:
 D18Q000335

 ELO
 ESY20X2
 U64964A8N263531

 Brother
 HL-L2350DW
 AS1721142050

APC SMT-2200

Standard Referenced: FCC Class B

Temperature: 25°C Humidity: 23% Pressure: 831 mb

Temperature: 25°C Humidity: 23% Pressure: 831 mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Printing Ballots
Test Engineer: Mike Tidquist

PR079580-22-CE.doc FR0100

Type	Frequency	Level	Transducer	Gain / Loss	Final	Test Point	Margin: FCC Class	Margin: FCC
	(MHz)	(dBuV)	(dB)	(dB)	(dBuV)		B AV (dB)	Class B QP (dB)
AV	0.151	38.9	-1.4	16.0	53.5	Line 1	2.46	-
QP	0.151	43.0	-1.4	16.0	57.6	Line 1	-	8.40
AV	0.168	34.0	-1.3	16.0	48.8	Line 1	6.68	-
QP	0.168	41.6	-1.3	16.0	56.4	Line 1	=	9.09
AV	0.199	26.4	-1.1	16.1	41.4	Line 1	13.23	-
QP	0.199	38.3	-1.1	16.1	53.3	Line 1	=	11.31
AV	0.267	27.1	-0.8	16.1	42.4	Line 1	10.28	-
QP	0.267	27.6	-0.8	16.1	42.9	Line 1	-	19.79
AV	1.307	17.9	-0.3	16.1	33.7	Line 1	12.29	-
QP	1.307	26.2	-0.3	16.1	42.0	Line 1	=	14.01
AV	8.319	16.1	-0.3	16.1	31.8	Line 1	18.16	-
QP	8.319	14.9	-0.3	16.1	30.7	Line 1	=	29.31
AV	16.294	5.7	-0.4	15.7	21.0	Line 1	29.00	-
QP	16.294	11.5	-0.4	15.7	26.8	Line 1	=	33.15
AV	0.151	36.9	-1.4	16.0	51.5	Neutral	4.48	-
QP	0.151	44.3	-1.4	16.0	58.9	Neutral	=	7.12
AV	0.163	34.1	-1.3	16.0	48.8	Neutral	6.81	-
QP	0.163	41.4	-1.3	16.0	56.1	Neutral	=	9.48
AV	0.179	34.4	-1.2	16.1	49.2	Neutral	5.93	=
QP	0.179	38.2	-1.2	16.1	53.0	Neutral	=	12.16
AV	0.226	24.9	-0.9	16.1	40.1	Neutral	13.77	=
QP	0.226	33.2	-0.9	16.1	48.4	Neutral	-	15.47
AV	1.352	17.0	-0.3	16.1	32.8	Neutral	13.18	-
QP	1.352	25.1	-0.3	16.1	40.9	Neutral	-	15.12
AV	7.050	8.6	-0.3	16.1	24.4	Neutral	25.60	-
QP	7.050	17.3	-0.3	16.1	33.1	Neutral	=	26.92
AV	18.178	6.5	-0.4	15.7	21.9	Neutral	28.13	-
QP	18.178	11.7	-0.4	15.7	27.1	Neutral	-	32.90

The highest emission measured was at 0.151 MHz, which was 2.46 dB below the limit.

- "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
 - PK = Peak Measurement: RBW is 9 kHz, VBW is 3 MHz
 - QP = Quasi-Peak Measurement: RBW is 9 kHz, VBW is 3 MHz, and QP Detection is ENABLED
 - AV = Video Average Measurement: RBW is 9 kHz, VBW is 10 Hz
- > The "Final" emissions level is attained by taking the "Level" and adding the "Transducer" factor and the "Gain/Loss" factor. (Sample Calculation: 40.2 dBuV + 1.6 dB + 16.3 dB = 58.1 dBuV. **Important Note**: This is a sample calculation only for the purpose of demonstration, and does not reflect data in this report.)
- The "TestPoint" indicates which AC or DC input power line or which I/O cable the measurement was made on.
- The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.
- > The PRESCAN is a peak measurement and is performed with the RBW set to 9 kHz, and the VBW set to 3 MHz

Pro V&V Manufacturer: Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000335 Model: S/N: ELO ESY20X2 U64964A8N263531 Brother HL-L2350DW AS1721142050 APC SMT-2200 FCC Class B Date: May 11, 2018

Standard Referenced:

PR079580-22-CE.doc

FR0100 Project:PR079580 Test Number: 9 Date: 05-11-2018 Pro V&V, Model#: ClearAccess, Serial#: See Test Log 95 Power: 120Vac/60Hz Notes: 80 Amplitude (dBuV) 60 35 30 25-10.0 Frequency (MHz)

Figure B1: Conducted Emissions Prescan, Line 1, 0.150MHz to 30MHz, Peak Measurements

Manufacturer: Pro V&V Project Number: PR079580 Test Area: Customer Representative: Stephen Han 10M #1 ClearAccess D18Q000335 Model: S/N: ELO ESY20X2 U64964A8N263531 Brother HL-L2350DW AS1721142050 APC SMT-2200

Standard Referenced: FCC Class B Date: May 11, 2018

PR079580-22-CE.doc FR0100

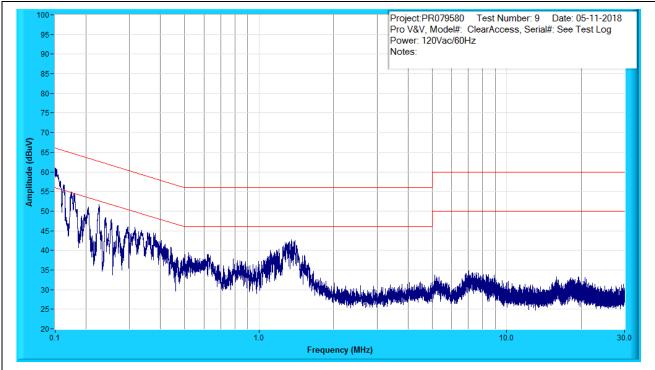


Figure B2: Conducted Emissions Prescan, Neutral, 0.150MHz to 30MHz, Peak Measurements

FR0100

Conducted Emissions, FCC Part 15

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000335 Model: S/N: ELO ESY20X2 U64964A8N263531 Brother HL-L2350DW AS1721142050 SMT-2200 APC

Standard Referenced: FCC Class B Date: May 11, 2018
PR079580-22-CE.doc

 $Figure\ B3:\ Conducted\ Emissions\ Test\ Setup-Front\ Side$

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000335 Model: S/N: ELO ESY20X2 U64964A8N263531 Brother HL-L2350DW AS1721142050 SMT-2200 APC

Date: May 11, 2018 Standard Referenced: FCC Class B

Figure B4: Conducted Emissions Test Setup – Right Side

FR0100

Conducted Emissions, FCC Part 15

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000335 Model: S/N: ELO ESY20X2 U64964A8N263531 Brother HL-L2350DW AS1721142050 SMT-2200 APC

Standard Referenced: FCC Class B Date: May 11, 2018

PR079580-22-CE.doc

Figure B5: Conducted Emissions Test Setup – Back Side

FR0100

Conducted Emissions, FCC Part 15

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess D18Q000335 Model: S/N: ELO ESY20X2 U64964A8N263531 Brother HL-L2350DW AS1721142050 SMT-2200 APC

Standard Referenced: FCC Class B Date: May 11, 2018
PR079580-22-CE.doc

PR079580

Figure B6: Conducted Emissions Test Setup – Left Side

Pro V&V Manufacturer: Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 Model: ClearAccess S/N: D18Q000335 ELO ESY20X2 U64964A8N263531 Brother HL-L2350DW AS1721142050 ${\sf APC}$ SMT-2200 Standard Referenced: FCC Class B Date: May 11, 2018

PR079580-22-CE.doc

FR0100

Test Equipment List

	Test Equipment List						
ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due	
1017	Pacific Power	TMX 140	0256	4 kVA, 50 Hz Power Source	NA	NA	
1200	Agilent Technology	11947A	3107A03807	Transient Limiter, 9 kHz to 200 MHz	11/27/2017	11/27/2018	
1213	Solar	7930-100	885210	High Pass Filter, fc: 100kHz, - 100dB @ 33kHz	02/07/2018	02/07/2019	
1229	Hewlett Packard	85685A	3010A01077	RF Preselector	02/09/2018	02/09/2019	
1245	Fluke	87V	91600341	True RMS MultiMeter with Temp	06/23/2017	06/23/2018	
1263	Hewlett Packard	8566B	2747A05127	Spectrum Analyzer, 100 Hz to 22 GHz	02/09/2018	02/09/2019	
1264	Hewlett Packard	85662A	2848A18247	Spectrum Analyzer Display	02/09/2018	02/09/2019	
1265	Hewlett Packard	85650A	2521A00641	Quasi-Peak Adapter	02/09/2018	02/09/2019	
1332	Com-Power	CGC-510	311636	Conducted Comb Generator	NA	NA	
1552	EXTECH Instruments	445715	NA	Hygro-Thermometer	12/07/2017	12/07/2018	
1557	EMCI	EMCI, 2 Phase LISN	11	150 kHz to 30 MHz, 277 Vac/400 Vdc, 50/60 Hz, 16 A	02/22/2018	02/22/2019	
1591	EMCI	CEAS	V4.1.1	Commercial Emissions Automation Software - 10 M#1	NA	NA	

CONDUCTED EMISSIONS TEST DATA CONFIGURATION 4

Manufacturer:Pro V&VProject Number:PR079580Customer Representative:Stephen HanTest Area:10M #1

 Model:
 ClearAccess
 S/N:
 A18C004071

 ELO
 ESY20X2
 AK7A044083A0

 OKI
 B432dn
 AS1721132721

APC SMT-2200

Standard Referenced: FCC Class B

Temperature: 22°C Humidity: 39% Pressure: 839 mb

Temperature: 22°C Humidity: 39% Pressure: 839 mb
Input Voltage: 120Vac/60Hz

Configuration of Unit: Printing Ballots
Test Engineer: Mike Tidquist

PR079580-22-CE.doc FR0100

	00-22-CL.doc							1 K0100
Type	Frequency (MHz)	Level (dBuV)	Transducer (dB)	Gain / Loss (dB)	Final (dBuV)	Test Point	Margin: FCC Class B AV (dB)	Margin: FCC Class B QP (dB)
AV	0.154	30.4	-1.4	16.0	45.1	Line 1	10.82	-
QP	0.154	40.0	-1.4	16.0	54.7	Line 1	-	11.22
AV	0.159	28.9	-1.3	16.0	43.6	Line 1	12.14	-
QP	0.159	39.0	-1.3	16.0	53.6	Line 1	-	12.14
AV	0.173	27.6	-1.3	16.0	42.4	Line 1	12.96	-
QP	0.173	36.6	-1.3	16.0	51.4	Line 1	-	13.92
AV	0.280	22.1	-0.8	16.1	37.4	Line 1	14.88	-
QP	0.280	23.3	-0.8	16.1	38.6	Line 1	-	23.66
AV	0.568	9.1	-0.5	16.1	24.7	Line 1	21.26	-
QP	0.568	18.0	-0.5	16.1	33.7	Line 1	-	22.32
AV	1.313	13.2	-0.3	16.1	29.0	Line 1	17.04	-
QP	1.313	21.3	-0.3	16.1	37.1	Line 1	-	18.93
AV	9.229	10.1	-0.3	16.1	25.8	Line 1	24.21	-
QP	9.229	19.3	-0.3	16.1	35.0	Line 1	-	24.97
AV	0.151	31.9	-1.4	16.0	46.5	Neutral	9.46	-
QP	0.151	39.9	-1.4	16.0	54.5	Neutral	-	11.43
AV	0.156	29.9	-1.4	16.0	44.5	Neutral	11.34	-
QP	0.156	38.6	-1.4	16.0	53.2	Neutral	-	12.59
AV	0.175	27.9	-1.2	16.0	42.7	Neutral	12.60	-
QP	0.175	36.0	-1.2	16.0	50.8	Neutral	-	14.49
AV	0.293	13.2	-0.7	16.1	28.6	Neutral	23.32	-
QP	0.293	22.5	-0.7	16.1	37.9	Neutral	-	24.06
AV	0.594	10.9	-0.5	16.1	26.6	Neutral	19.40	-
QP	0.594	17.8	-0.5	16.1	33.4	Neutral	-	22.60
AV	1.361	12.1	-0.3	16.1	27.9	Neutral	18.13	-
QP	1.361	20.1	-0.3	16.1	36.0	Neutral	-	20.03
AV	9.252	10.8	-0.3	16.0	26.6	Neutral	23.42	-
QP	9.252	20.0	-0.3	16.0	35.7	Neutral	-	24.28

The highest emission measured was at 0.151 MHz, which was 9.46 dB below the limit.

- > "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
 - PK = Peak Measurement: RBW is 9 kHz, VBW is 3 MHz
 - QP = Quasi-Peak Measurement: RBW is 9 kHz, VBW is 3 MHz, and QP Detection is ENABLED
 - AV = Video Average Measurement: RBW is 9 kHz, VBW is 10 Hz
- > The "Final" emissions level is attained by taking the "Level" and adding the "Transducer" factor and the "Gain/Loss" factor. (Sample Calculation: 40.2 dBuV + 1.6 dB + 16.3 dB = 58.1 dBuV. **Important Note**: This is a sample calculation only for the purpose of demonstration, and does not reflect data in this report.)
- > The "TestPoint" indicates which AC or DC input power line or which I/O cable the measurement was made on.
- The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.
- The PRESCAN is a peak measurement and is performed with the RBW set to 9 kHz, and the VBW set to 3 MHz

FR0100

Conducted Emissions, FCC Part 15

Pro V&V Manufacturer: Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess S/N: A18C004071 Model: **ELO** ESY20X2 AK7A044083A0 OKI B432dn AS1721132721 APC SMT-2200 Standard Referenced: FCC Class B Date: May 14, 2018

Standard Referenced: FCC Class B
PR079580-22-CE.doc

Figure B1: Conducted Emissions Prescan, Line 1, 0.150MHz to 30MHz, Peak Measurements

Manufacturer: Pro V&V Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess A18C004071 Model: S/N: ESY20X2 AK7A044083A0 **ELO** OKI B432dn AS1721132721 APC SMT-2200

Standard Referenced: FCC Class B Date: May 14, 2018

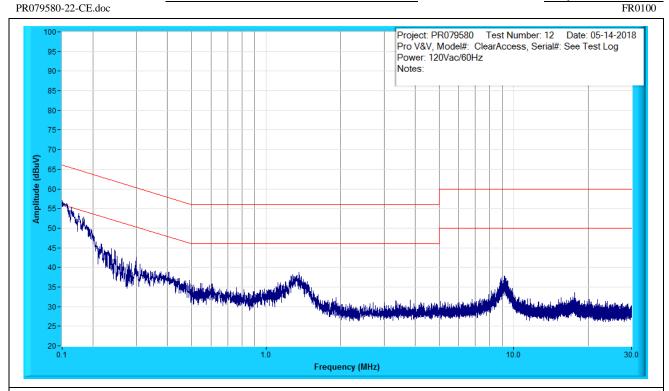


Figure B2: Conducted Emissions Prescan, Neutral, 0.150MHz to 30MHz, Peak Measurements

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess S/N: A18C004071 Model: ELO ESY20X2 AK7A044083A0 OKI B432dn AS1721132721 APC SMT-2200

Standard Referenced: FCC Class B Date: May 14, 2018

PR079580-22-CE.doc FR0100

Figure B3: Conducted Emissions Test Setup – Front Side

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess S/N: A18C004071 Model: ELO ESY20X2 AK7A044083A0 OKI B432dn AS1721132721 SMT-2200 APC

Standard Referenced: FCC Class B Date: May 14, 2018

Figure B4: Conducted Emissions Test Setup – Right Side

FR0100

Conducted Emissions, FCC Part 15

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess S/N: A18C004071 Model: ELO ESY20X2 AK7A044083A0 OKI B432dn AS1721132721 APC SMT-2200

Standard Referenced: FCC Class B Date: May 14, 2018
PR079580-22-CE.doc

Figure B5: Conducted Emissions Test Setup – Back Side

Pro V&V PR079580 Manufacturer: Project Number: Customer Representative: Stephen Han Test Area: 10M #1 ClearAccess A18C004071 Model: S/N: ELO ESY20X2 AK7A044083A0 OKI B432dn AS1721132721 APC SMT-2200

Standard Referenced: FCC Class B Date: May 14, 2018
PR079580-22-CE.doc

Figure B6: Conducted Emissions Test Setup – Left Side

Manufacturer: Pro V&V Project Number: PR079580 Customer Representative: Stephen Han Test Area: 10M #1 Model: ClearAccess S/N: A18C004071 AK7A044083A0 ELO ESY20X2 OKI B432dn AS1721132721 ${\sf APC}$ SMT-2200 Standard Referenced: FCC Class B Date: May 14, 2018 PR079580-22-CE.doc FR0100

Test Equipment List

	Test Equipment List							
ID	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due		
Number								
1017	Pacific Power	TMX 140	0256	4 kVA, 50 Hz Power Source	NA	NA		
1200	Agilent	11947A	3107A03807	Transient Limiter, 9 kHz to 200	11/27/2017	11/27/2018		
	Technology			MHz				
1213	Solar	7930-100	885210	High Pass Filter, fc: 100kHz, -	02/07/2018	02/07/2019		
				100dB @ 33kHz				
1229	Hewlett	85685A	3010A01077	RF Preselector	02/09/2018	02/09/2019		
	Packard							
1245	Fluke	87V	91600341	True RMS MultiMeter with Temp	06/23/2017	06/23/2018		
1263	Hewlett	8566B	2747A05127	Spectrum Analyzer, 100 Hz to 22	02/09/2018	02/09/2019		
	Packard			GHz				
1264	Hewlett	85662A	2848A18247	Spectrum Analyzer Display	02/09/2018	02/09/2019		
	Packard							
1265	Hewlett	85650A	2521A00641	Quasi-Peak Adapter	02/09/2018	02/09/2019		
	Packard							
1332	Com-Power	CGC-510	311636	Conducted Comb Generator	NA	NA		
1552	EXTECH	445715	NA	Hygro-Thermometer	12/07/2017	12/07/2018		
	Instruments							
1557	EMCI	EMCI, 2 Phase	11	150 kHz to 30 MHz, 277 Vac/400	02/22/2018	02/22/2019		
		LISN		Vdc, 50/60 Hz, 16 A				
1591	EMCI	CEAS	V4.1.1	Commercial Emissions	NA	NA		
				Automation Software - 10 M#1				

APPENDIX C - PRODUCT DATA SHEET

1.0 **Client Information**

Client Information	
Manufacturer Name	Clear Ballot Group (manufacturer) Pro V&V (client)
Address	700 Boulevard South Suite 102
City	Huntsville
State	AL
Zip Code	35802
Client Representative	Stephen Han
Title	Sr. Project Engineer
Phone	256-713-1111
Fax	256-713-1112
Email	stephen.han@provandv.com

Product Information - General 2.0

Product Information	
Product Name (as it should appear on test	ClearAccess
report)	
Model Number (of UUT to be tested)	ClearAccess
Functional description of product (what is it,	ballot marking device
what does it do, etc.)	
List all modes of operation	Regular and audio
Can modes be operated simultaneously? If so,	Yes
explain.	
What mode(s) will be used for testing?	Both
Product type (IT, Medical, Scientific, Industrial,	IT
etc.)	
Is the product an intentional radiator	no
Product Dimensions	Multiple
Product Weight	Multiple
Will fork lift be required	No
Applicable Standards, if known	EAC 2005 VVSG Volumes I and II
Describe all environment(s) where product will	Used for voting during elections
be used (residential, commercial, industrial,	
etc.)	
Does product consist of multiple components?	PC, Printer, UPS

(If yes, please describe each system component)	
Cycle time > 3 seconds? (If yes, how long?)	Yes.
Highest internally generated frequency	
Product Set-up Time	15 minutes
Boot up time in the event of an unintentional	2 minutes but UUT will be on UPS
power down	

Identify **ALL** I/O connections on the unit(s) under test, as well as **MAXIMUM** associated cable lengths below

			I/O Type		Patient	
Model No.	Description	UUT- UUT	UUT - SE	Length (m)	Connect? (See Note)	QTY
generic	USB			6 ft		
generic	power			6 ft		

Note: "Patient Connect" column applies only to medical devices.

3.0 Power

Power Requirements	
Does/can product connect to AC mains?	Yes.
(If so, can the UUT function when connected to	
AC?)	
Input Voltage Rating as it appears on unit,	n/a
power supply, or power brick	
Input Current (specify @ 230 Vac/50 Hz)	
Single or Multi-Phase	single
(If multi-phase, specify delta or wye)	
Is input power connector two-prong (Hot &	3 prong
Neutral) or 3-prong (H, N, Ground)	
Does UUT have more than 1 power cord? (If	No
yes, explain.)	

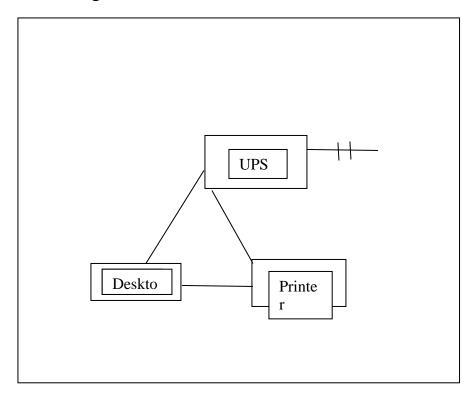
4.0 Unit Under Test (UUT) – Detailed Information

UUT Hardware									
Condition		New	New						
Configuration During Test		Printing Ballots							
Input Pow	er	Norma	l AC power	120Vac/60	Hz				
UUT Com	ponen	ts							
Name	Mod	el No.	Seria	al No.	Description				
				Configura	tion 1				
ELO	ESY	15E2	A18C	004079	AIO Touchscreen				
Brother	HL- L2350DW		U64964AN263525		Printer				
APC	SMT	-2200	AS1638230963		UPS				
				Configura	tion 2				
ELO	ESY	15E2	D18Q000334		AIO Touchscreen				
OKI	B43	32dn	AK7A044093A0		Printer				
APC	SMT	-2200	AS172	1132721	UPS				
				Configura	tion 3				
ELO	ESY20X2		D18Q000335		AIO Touchscreen				
Brother	HL- L2350DW		U64964A8N263531		Printer				
APC SMT-2200		AS1721142050		UPS					
				Configura	tion 4				
ELO	ESY	20X2	A18C	004071	AIO Touchscreen				

OKI	B432dn	AK7A044083A0	Printer
APC	SMT-2200	AS1721132721	UPS (Emissions only)
APC	SMT-2200	AS1808141143	UPS (Immunity)

I/O Cabling

See Section 2.0 for details


See Section 2.0 for details						
UUT Software/Firmware						
Name	Version/Revision	Functionality				
ClearAccess	1.5.0e	Voting systems software				
UUT Operati	ing Conditions					
List all freque	ncies generated/used	n/a				
by the product.		11/ d				
How will product be exercised		Printing ballots				
during test?		Timing bands				
How will product be monitored		Visually				
during test?		Visually				
What are the product's critical		Unit keeps printing				
parameters?		One keeps printing				
Specify tolerance of all critical		Unit keeps printing				
parameters.		Omt keeps printing				

5.0 Support Equipment (SE) – Detailed Information

Support Equ	uipment (SE)							
Name	Model No.	Serial No.	Description					
Monoprice	108323	CBG-HP-010	Headphones					
Storm	EZ08- 222013	15000005	ATI					
Sip & Puff	AC-0313-H2	CBG-SP-010	Sip a	Sip and Puff				
Zebra	DS457	CBG-Zeb-010	Bar Code Scanner					
SE I/O Cabli	ng							
Model No.		Description	Shielded?	Length	Quantity			
Generic		USB N >3M 1			1			
Generic	3.5m	m Headphone jack N >3M 1		1				
SE Software	e/Firmware							
Name	Version/Revi	sion	n Functionality					
			n/a					

6.0 Block Diagram

Important note: The product data sheet is a critical piece of documentation which is used as the basis for any test reports that EMCI will generate; it must be completed *prior* to testing. It should be reviewed carefully by the client. If incorrect information is provided resulting in revisions to test reports, the client will be subject to report revision fees.

APPENDIX D - EMI TEST LOG

EMI Test Log

Manufacturer:	Pro V&V	Project Number:	PR079580
Model:	ClearAccess	S/N:	Config 1:
	Config 1:		A18C004079
	ELO ESY15E2		U64964AN263525
	Brother HL-L2350DW		AS1638230963
	APC SMT-2200		Config 2:
	Config 2:		D18Q000334
	ELO ESY15E2		AK7A044093A0
	OKI B432dn		AS1721132721
	APC SMT-2200		Config 3:
	Config 3:		D18Q000335
	ELO ESY20X2		U64964A8N263531
	Brother HL-L2350DW		AS1721142050
	APC SMT-2200		Config 4:
	Config 4:		A18C004071
	ELO ESY20X2		AK7A044083A0
	OKI B432dn		AS1721132721(Emis
	APC SMT-2200		sions)
			AS1808141143(Imm
			unity)
Customer Representative:	Michael Walker		
Standard Referenced:	EAC 2005 VVSG (FCC Class B)		

FR0105

10m Emissions

Test	Test Code	Date	Event	ОТ	Time (hrs)	Result	Initials
	6005	May 8, 2018 0800-1130	Initial Product Set-up & Configuration Engineering / Trouble-Shoot		3.5		MT
RE	13410	1130-1200	Test #1: Radiated Emissions, 30 MHz - 1 GHz, 8 Rads, 4 Heights, 3 sec. dwell, ref. level = 80 dBuV, 10 meter distance (4.1.2.9) 120 VAC / 60 Hz Config 1		0.5		MT
		1200-1230	Lunch				MT
RE		1230-1330	Continue: Test #1: Radiated Emissions, 30 MHz - 1 GHz, 8 Rads, 4 Heights, 3 sec. dwell, ref. level = 80 dBuV, 10 meter distance (4.1.2.9) 120 VAC / 60 Hz Config 1		1.0	Pass	MT
RE	13510	1330-1430	Test #2: Radiated Emissions, 1 GHz - 18 GHz, 16 Rads, 3 Heights, 3 sec. dwell, ref. level = 107 dBuV, 3 meter distance (4.1.2.9) 120 VAC / 60 Hz Config 1		1.0	Pass	MT
CE	2345	1430-1530	Test #3: Conducted Emissions, 150 kHz - 30 MHz (4.1.2.9) 120 VAC / 60 Hz Config 1		1.0	Pass	MT
		1530-1630	Client running Post Test and setting up Config 2.		1.0	Complete	MT
	6008	May 9, 2018 0800-1200	Waiting on UPS delivery and Power Cord plugs		4.0		MT
		1200-1230	Lunch				MT
		1230-1630	Continue waiting on Client Incorrect UPS's were shipped, Client is determining options.		4.0		MT
	6008	May 10, 2018	Client had no UPS's to test with No testing performed today		8.0		MT
CE		May 11, 2018 0800-0900	Test #4: Conducted Emissions, 150 kHz - 30 MHz (4.1.2.9) 120 VAC / 60 Hz Config 2		1.0	Pass	MT
RE		0900-1030	Test #5: Radiated Emissions, 1 GHz - 18 GHz, 16 Rads, 3 Heights, 3 sec. dwell, ref. level = 107 dBuV, 3 meter distance (4.1.2.9) 120 VAC / 60 Hz Config 2		1.5	Pass	MT

10m Emissions

Test	Test Code	Date	Event	OT	Time (hrs)	Result	Initials
RE		1030-1200	Test #6: Radiated Emissions, 30 MHz - 1 GHz, 8 Rads, 4 Heights, 3 sec. dwell, ref. level = 80 dBuV, 10 meter distance (4.1.2.9) 120 VAC / 60 Hz Config 2		1.5	Pass	MT
RE		1230-1400	Test #7: Radiated Emissions, 30 MHz - 1 GHz, 8 Rads, 4 Heights, 3 sec. dwell, ref. level = 80 dBuV, 10 meter distance (4.1.2.9) 120 VAC / 60 Hz Config 3		1.5	Pass	MT
RE		1400-1500	Test #7: Radiated Emissions, 1 GHz - 18 GHz, 16 Rads, 3 Heights, 3 sec. dwell, ref. level = 107 dBuV, 3 meter distance (4.1.2.9) 120 VAC / 60 Hz Config 3		1.0	Pass	MT
CE		1500-1600	Test #8: Conducted Emissions, 150 kHz - 30 MHz (4.1.2.9) 120 VAC / 60 Hz Config 3		1.0	Pass	MT
RE		May 14, 2018 1000-1100	Test #9: Radiated Emissions, 1 GHz - 18 GHz, 16 Rads, 3 Heights, 3 sec. dwell, ref. level = 107 dBuV, 3 meter distance (4.1.2.9) 120 VAC / 60 Hz Config 4 Printer ran out of paper will need to rerun 1-18GHz test		1.0		MT
RE		1100-1200	Test #10: Radiated Emissions, 1 GHz - 18 GHz, 16 Rads, 3 Heights, 3 sec. dwell, ref. level = 107 dBuV, 3 meter distance (4.1.2.9) 120 VAC / 60 Hz Config 4		1.0	Pass	MT
		1200-1230	Lunch				MT
RE		1230-1400	Test #11: Radiated Emissions, 30 MHz - 1 GHz, 8 Rads, 4 Heights, 3 sec. dwell, ref. level = 80 dBuV, 10 meter distance (4.1.2.9) 120 VAC / 60 Hz Config 4		1.5	Pass	MT
CE		1400-1500	Test #12: Conducted Emissions, 150 kHz - 30 MHz (4.1.2.9) 120 VAC / 60 Hz Config 4		1.0	Pass	Mt

Regular hours: 36.0
Overtime/Prem hours: 36.0

APPENDIX E - LABORATORY ACCREDITATION

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

NATIONAL TECHNICAL SYSTEMS (NTS) - LONGMONT 1736 Vista View Drive Longmont, CO 80504-5242 Mr. Eric Loucks Phone: 303 776 7249

ELECTRICAL

Valid To: February 28, 2018 Certificate Number: 0214.43

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following <u>Electromagnetic Compatibility/Interference (EMC/EMI)</u>, <u>Lightning</u>, <u>Transient</u>, <u>Surge</u>, and <u>Product Safety tests</u>:

Test Technology:	Test Method(s) ^{1,2} :
Emissions	
Radiated and Conducted	CFR 47 FCC, Parts 15B (using ANSI C63.4: 2014), 15C (using ANSI C63.10:2013), and 18 (using MP-5:1986); CISPR 32, Ed. 1 (2012-01); EN 55032:2012/AC:2013; AS/NZS CISPR 22 (2002); AS/NZS 3548 (1997); AS/NZS CISPR 14-1 (2003); IEC/CISPR 14-1, Ed. 4 (2003); IEC 61000-3-12, Ed. 2.0 (2011); EN 61000-3-12 (2011); IEC 61000-6-1, Ed. 2 (2005-03); IEC 61000-6-2, Ed. 2.0 (2005-01); IEC 61000-6-3 (1996); EN 61000-6-3 (2001) + A1 (2004); EN 61000-6-4 (2007); KN 32:2015 (Annex 11); KN 22; KN 11
Harmonics	IEC 61000-3-2, Ed. 2.2 (2004-11); IEC 61000-3-2, Ed. 3.0 (2005) + A1 (2008) + A2 (2009); IEC 61000-3-2, Ed. 4.0 (2014-05)
Flicker	IEC 61000-3-3, Ed. 1.1 (2002-03); EN 61000-3-3 + Al (2001); IEC 61000-3-3, Ed. 1.1 (2003) + A2 (2005); IEC 61000-3-3, Ed. 3.0 (2013-05)
Immunity	
Electrostatic Discharge (ESD)	IEC 61000-4-2 (2001); EN 61000-4-2 (2001) + A2 (2001); EN 61000-4-2 + AI (1998) + A2 (2001); IEC 61000-4-2, Ed. 2.0 (2008-12); EN 61000-4-2 (2009-05); KN 61000-4-2; KN 61000-4-2 (2008-5); KN 61000-4-2 (Annex 1-1)
Radiated	IEC/EN 61000-4-3, Ed. 2.1 (2002) + A1 (2002); EN 61000-4-3; IEC 61000-4-3 (1995) + A1 (1998) + A2 (2000); EN 61000-4-3 (2002) + AI (2002); IEC 61000-4-3, Ed. 3.0 (2006-02) + AI (2007) + A2 (2010); EN 61000-4-3 (2006) + AI (2008) + A2 (2010); KN 61000-4-3; KN 61000-4-3 (2008-5); KN 61000-4-3 (Annex 1-2)

(A2LA Cert. No. 0214.43) Revised 11/17/2017

Landen

Page 1 of 4

<u>Test Technology:</u> <u>Test Method(s)^{1,2}:</u>

Immunity (cont'd)

Electrical Fast Transient/Burst IEC 61000-4-4, Ed. 2.0 (2004-07); EN 61000-4-4 (2004);

EN 61000-4-4:2012; IEC 61000-4-4 (2012-04);

KN 61000-4-4; KN 61000-4-4 (2008-5);

KN 61000-4-4 (Annex 1-3)

Surge IEC 61000-4-5, Ed. 2.0 (2005-11); EN 61000-4-5;

EC 61000-4-5, Ed. 3.0 (May 2014); BS EN 61000-4-5 (2006); EN 61000-4-5: 2014; KN 61000-4-5; KN 61000-4-5 (2008-5);

KN 61000-4-5 (Annex 1-4); IEEE C62.41.1 (2002); IEEE C62.41.2 (2002); IEEE C62.25 (2002)

Conducted IEC 61000-4-6, Ed. 2.1 (2004); EN 61000-4-6;

EN 61000-4-6 (1996) + A1 (2001);

IEC 61000-4-6, Ed. 2.2 (2006-05); IEC 61000-4-6, Ed. 3.0 (2008);

IEC 61000-4-6, Ed. 4.0 (2013); EN 61000-4-6 (2009); EN 61000-4-6 (2014); KN 61000-4-6; KN 61000-4-6 (2008-5);

KN 61000-4-6 (Annex 1-5)

Power Frequency Magnetic Field IEC 61000-4-8 (2001) + A1 (2000);

EN 61000-4-8 (2001) + A1 (2000);

EN 61000-4-8 (1993) + A1 (2001); IEC 61000-4-8 (2009); EN 61000-4-8:2010; KN 61000-4-8; KN 61000-4-8 (2008-5);

KN 61000-4-8 (Annex 1-6)

Voltage Dips, Short

Interruptions, and Voltage Variations

IEC 61000-4-11, Ed. 2 (2004-03); EN 61000-4-11; EN 61000-4-11 (1994) + Al (2001); EN 61000-4-11 (2004);

KN 61000-4-11; KN 61000-4-11 (2008-5);

KN 61000-4-11 (Annex 1-7)

Product Safety

 Medical Electrical
 IEC 60601-1-2, Ed. 3.0 (2007); KN 60601-1-2 (2008-5);

 Equipment
 IEC 60601-1-2, Ed. 4, (2014-02); EN 60601-1-2 (2007);

EN 60601-1-2 (2015)

Generic/Product Family Standards

and Industry Standards

Generic Standards EN 61326-1: 2013; KN 35: 2015

Information Technology IEC/CISPR 22 (1997); EN 55022 (1998) + A1 (2000);

Equipment IEC/CISPR 22 (1993); EN 55022 (1994);

IEC/CISPR 22 (1993); EN 55022 (1994) + A1 (1995) + A2 (1997);

CNS 13438 (1997);

IEC/CISPR 22, Ed. 4 (2003-04); EN 55022 (1998); IEC/CISPR 22, Ed. 5 (2005); EN 55022 (1998); IEC/CISPR 22, Ed. 5 (2005) + A1 (2005); EN 55022 (1998) + A1 (2000) + A2 (2003);

(A2LA Cert. No. 0214.43) Revised 11/17/2017

Page 2 of 4

<u>Test Technology:</u> <u>Test Method(s)^{1,2}:</u>

Generic/Product Family Standards and Industry Standards (cont'd)

Information Technology Equipment (cont'd) CNS 13438 (2006) (up to 6GHz);

IEC/CISPR 22, Edition 5.2 (2006-03); EN 55022 (2006); EN 55022 (2006) + A1 (2007); EN 55022:2010; IEC/CISPR 22

(2008-09); AS/NZS CISPR 22 (2009); TCVN 7189:2009 (CISPR 22:2006);

VCCI V-3 (2009.04, 2011.04, 2013.04, 2014.04, 2015.04) (up to 6

GHz); VCCI-CISPR 32:2016;

CISPR 24 Ed 2.0 (2010-08); EN 55024 (2010);

KN 24

Industrial, Scientific, and Medical (ISM) Equipment AS/NZS CISPR 11 (2002); IEC/CISPR 11, Ed. 4.1 (2004-06);

AS/NZS CISPR 11 (2004);

IEC/CISPR 11, Ed. 4.1 (2004-06) + A1 (2004); EN 55011 (1998) + A1 (1999) + A2 (2002);

IEC/CISPR 11 (2003); EN 55011 (1998) + A2(2002);

EN 55011 (2009) + A1 (2010); IEC/CISPR 11 Ed. 5 (2009-05);

CISPR 11 Ed. 5.1 (2010)

Measure IEC 61326-1 Ed. 2.0 (2012)

Military/Defense MIL-STD-461F Method CE101 (30 Hz to 10 kHz);

$$\label{eq:mil-std-energy} \begin{split} \text{MIL-STD-461F Method CE102 (10 kHz to 10 MHz);} \\ \text{MIL-STD-461F Method CE106 (10 kHz to 40 GHz);} \\ \text{MIL-STD-461F Method CS101 (30 Hz to 150 kHz);} \end{split}$$

 $MIL\text{-}STD\text{-}461F \ Method \ CS106;$

 $\label{eq:mil-std-eq} \begin{array}{l} \mbox{MiL-sTD-461F Method CS114 (10 kHz to 200 MHz);} \\ \mbox{MiL-sTD-461F Method CS116 (10 kHz to 100 kHz);} \\ \mbox{MiL-sTD-461F Method RE101 (30 Hz to 100 kHz);} \\ \mbox{MiL-sTD-461F Method RE102 (10 kHz to 18 GHz);} \\ \mbox{MiL-sTD-461F Method RE103 (10 kHz to 40 GHz);} \\ \mbox{MiL-sTD-461F Method RS101 (30 Hz to 100 kHz);} \\ \mbox{MiL-sTD-461F Method RS103 (2 MHz to 40 GHz)} \\ \end{array}$

On the following types of products:

Telecommunication Equipment, Network Equipment, Industrial and Commercial Equipment, Electronic (Digital) Equipment, Medical, Aerospace, Military. Information Technology Equipment, Multimedia Equipment, Scientific Equipment

(A2LA Cert. No. 0214.43) Revised 11/17/2017

Page 3 of 4

¹ When the date, revision or edition of a test method standard is not identified on the scope of accreditation, the laboratory is required to be using the current version within one year of the date of publication, per part C., Section 1 of A2LA R101 - General Requirements- Accreditation of ISO-IEC 17025 Laboratories. If a specifier/regulator imposes a different transition period, this will supersede the A2LA one-year implementation period.

² The laboratory is only accredited for testing activities outlined within the test methods listed above. Reference to any other activity within these standards, such as risk management or risk assessment, does not fall within the laboratory's accredited capabilities.

Testing Activities Performed in Support of FCC Declaration of Conformity and Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1 3

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Unintentional Radiators</u> Part 15B	ANSI C63.4:2014	40000
<u>Industrial, Scientific, and Medical Equipment</u> Part 18	FCC MP-5 (February 1986)	40000
Intentional Radiators Part 15C	ANSI C63.10:2013	40000

 $^{^3}$ Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (https://apps.fcc.gov/oetcf/eas/) for a listing of FCC approved laboratories.

(A2LA Cert. No. 0214.43) Revised 11/17/2017

Page 4 of 4

Accredited Laboratory

A2LA has accredited

NATIONAL TECHNICAL SYSTEMS (NTS) - LONGMONT

Longmont, CO

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 28th day of October 2016.

President and CEO For the Accreditation Council Certificate Number 0214.43 Valid to February 28, 2018 Revised June 5, 2017

 $For the \ tests \ to \ which \ this \ accreditation \ applies, \ please \ refer \ to \ the \ laboratory's \ Electrical \ Scope \ of \ Accreditation.$

END OF REPORT