EMC / EMI Test Report

As per

2015 VVSG Volume I; Version 1.1

Sub-paragraphs 4.1.2.5 to 4.1.2.12

2015 VVSG Volume II; Version 1.1

Sub-paragraph 4.8

Emissions & Immunity

on the

ICP2 V1

TÜV SÜD Canada Inc. Issued by:

> 11 Gordon Collins Dr, Gormley, ON, L0H 1G0

> > M. P. Aleer.

Canada

Ph: (905) 883-7255

Testing produced for

See Appendix A for full client & EUT details.

Marty McLear, **Project Engineer**

Reviewed by:

Min Xie. Sr. Project Engineer

Registration # CA6844

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Table of Contents

Table of Contents	2
Report Scope	3
Summary	4
Test Results Summary Notes, Justifications, or Deviations Sample Calculation(s)	<i>6</i>
Applicable Standards, Specifications and Methods	7
Document Revision Status	8
Definitions and Acronyms	9
Testing Facility	11
Calibrations and Accreditations Testing Environmental Conditions and Dates	
Detailed Test Result Section	13
Power Line Conducted Emissions – 4.1.2.9 Radiated Emissions – 4.1.2.9 Electrical Power Disturbance – 4.1.2.5 Electrical Fast Transients / Bursts – 4.1.2.6 Lightning Surge – 4.1.2.7 Electrostatic Disruption – 4.1.2.8 Electromagnetic Susceptibility – 4.1.2.10 Conducted RF Immunity – 4.1.2.11 Magnetic Fields Immunity – 4.1.2.12	
Appendix A – EUT & Client Provided Details	
Appendix B – EUT, Peripherals, and Test Setup Photos	
Appendix C – Product Marking	

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Report Scope

This report addresses the EMC verification testing and test results of the **ICP2 V1**, Model: **PCOS-330A** herein referred to as EUT (Equipment Under Test). The EUT was tested for emissions and immunity compliance against the following standards:

2015 VVSG Volume I; Version 1.1

2015 VVSG Volume II; Version 1.1

Power line conducted emissions, radiated emissions and immunity testing was evaluated on the EUT. Test procedures, results, justifications, and engineering considerations, if any, follow later in this report.

For a more detailed list of the standards and the revision used, see the "Applicable Standards, Specifications and Methods" section of this report.

This report does not imply product endorsement by any government, accreditation agency, or TÜV SÜD Canada Inc.

Opinions or interpretations expressed in this report, if any, are outside the scope of TÜV SÜD Canada Inc. accreditations. Any opinions expressed do not necessarily reflect the opinions of TÜV SÜD Canada Inc., unless otherwise stated.

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Summary

The results contained in this report relate only to the item(s) tested.

Equipment Under Test (EUT)	ICP V1 Model: PCOS-330A
EUT passed all tests performed	Yes
Testing conducted by	Marty McLear

For testing dates, see 'Testing Environmental Conditions and Dates'.

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Test Results Summary

Standard/ Method	Description	Criteria	Class / Level	Result
2015 VVSG Vol. I, Ver. 1.1 Sec. 4.1.2.9	Power Line Conducted Emissions	N/A	Class B	Pass
2015 VVSG Vol. I, Ver. 1.1 Sec. 4.1.2.9	Radiated Emissions	N/A	Class B	Pass
2015 VVSG Vol. I, Ver. 1.1 Sec. 4.1.2.5(a. b. c. d. e)	Electrical Power Disturbance	Normal Operation & No Data Loss	Various	Pass
2015 VVSG Vol. I, Ver. 1.1 Sec. 4.1.2.6 _(a. b. c.)	Electrical Fast Transient	Normal Operation & No Data Loss	±2kV - Mains	Pass
2015 VVSG Vol. I, Ver. 1.1 Sec. 4.1.2.7 _(a. b. c. d. e)	Lightning Surge	Normal Operation & No Data Loss	±2kV Line - Line ±2kV Line - Ground	Pass
2015 VVSG Vol. I, Ver. 1.1 Sec. 4.1.2.8	Electrostatic Disruption	Normal Operation & No Data Loss	±8kV Contact ±15kV Air	Pass
2015 VVSG Vol. I, Ver. 1.1 Sec. 4.1.2.9	Electromagnetic Susceptibility	Normal Operation & No Data Loss	10 V/m, 80 MHz – 1 GHz	Pass
2015 VVSG Vol. I, Ver. 1.1 Sec. 4.1.2.11	Conducted RF Immunity	Normal Operation & No Data Loss	10 Vrms, 150 kHz – 80 MHz	Pass
2015 VVSG Vol. I, Ver. 1.1 Sec. 4.1.2.12	Magnetic Fields Immunity	Normal Operation & No Data Loss	30 A/m	Pass
Overall Result P				

If the product as tested complies with the specification or requirement, the EUT is deemed to comply and is issued a 'PASS' grade. If not, 'FAIL' grade is issued.

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Notes, Justifications, or Deviations

The following justifications for tests not performed or deviations from the above listed specifications apply:

All Ethernet and USB ports are service ports and is not used in normal operation. Therefore, these ports are not loaded during testing.

The manufacturer presented the EUT representative of the main function(s) performed in the application for which it is intended. During measurement, the EUT is operational with a reprehensive working load and program to demonstrate typical operating conditions.

The EUT includes an external power supply converter.

Manufacturer: FranMar Model: ATS090-P190

The two documents referenced in the scope of work are custom test plans (or standard test procedures) which is not part of TUV SUD Canada's Scope of Accreditation; however, all individual EMC tests are in TUV SUD Canada's Scope of Accreditation.

A later revision of the standard may have been substituted in place of the previous dated referenced revision. The year of the specification used is listed under applicable standards. Using the later revision accomplishes the goal of ensuring compliance to the intent of the previous specification, while allowing the laboratory to incorporate the extensions and clarifications made available by a later revision.

Sample Calculation(s)

Radiated Emission Test

Margin = Limit – (Received Signal + Antenna Factor + Cable Loss – Pre-Amp Gain)

Margin = $50dB\mu V/m - (50dB\mu V + 10dB + 2.5dB - 20dB)$

Margin = 7.5 dB (pass)

Power Line Conducted Emission Test

Margin = Limit – (Received Signal + Attenuation Factor + Cable Loss + LISN Factor)

Margin = $73.0 dB\mu V - (50 dB\mu V + 10 dB + 2.5 dB + 0.5 dB)$

Margin = 10.0 dB (pass)

Milligauss to A/m Conversion (Magnetic Immunity)

1A/m = 12.57 mG

3A/m = 3*12.57 = 37.7 mG

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Applicable Standards, Specifications and Methods

ANSI C63.4:2014	Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
2015 VVSG Volume I; Version 1.1	United States Election Assistance Commission – Voluntary Voting System Guidelines – Version 1.1 Volume I
2015 VVSG Volume II; Version 1.1	United States Election Assistance Commission – Voluntary Voting System Guidelines – Version 1.1 Volume II
CISPR 16-2-3:2010/A2:2014	Specification for Radio Disturbance and Immunity Measuring Apparatus and Methods - Part 2-3: Methods of Measurement of Disturbances and Immunity - Radiated Disturbance Measurements
IEC 61000-4-2:2008 EN 61000-4-2:2009	Testing and Measurement Techniques - Electrostatic Discharge Immunity Test
IEC/EN 61000-4-3:2006/ A2:2010	Testing and Measurement Techniques - Radiated, Radio-Frequency, Electromagnetic Field Immunity Test
IEC/EN 61000-4-4:2004	Testing and Measurement Techniques - Electrical Fast Transient/Burst Immunity Test
IEC 61000-4-5:2005 EN 61000-4-5:2006	Testing and Measurement Techniques - Surge Immunity Test
IEC 61000-4-6:2008 EN 61000-4-6:2009	Testing and Measurement Techniques - Immunity to Conducted Disturbances, Induced by Radio-Frequency Fields
IEC 61000-4-8:2009 EN 61000-4-8:2010	Testing and Measurement Techniques - Power Frequency Magnetic Field Immunity Test
IEC/EN 61000-4-11:2004	Testing and Measurement Techniques - Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests
ISO 17025:2005	General Requirements for the Competence of Testing and Calibration Laboratories

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Document Revision Status

Revision	Date	Description
0	June 17, 2019	Initial release
-	-	-

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Definitions and Acronyms

The following definitions and acronyms are applicable in this report. See also ANSI C63.14.

AM – Amplitude Modulation

CDN – Coupling Decoupling Network

EFT – Electrical Fast Transients

ESD – Electro-Static Discharge

HCP – Horizontal Coupling Plane

VCP – Vertical Coupling Plane

LISN – Line Impedance Stabilization Network

NCR - No Calibration Required

NSA – Normalized Site Attenuation

N/A – Not Applicable

RF – Radio Frequency

AE – Associated Equipment. Equipment needed to exercise and/or monitor the operation of the EUT.

Class A Device – A device that is marketed for use in a commercial, industrial or business environment. A 'Class A' device should not be marketed for use by the general public. A 'Class A' device should contain a warning notice in the user manual stating that it could cause radio interference. For example: "Warning: Operation of this equipment in a residential environment could cause radio interference."

Class B Device – A device that is marketed for use in a residential environment and may also be used in a commercial, business or industrial environments. NOTE: A residential environment is an environment where the use of broadcast radio and television receivers may be expected within a distance of 10m of the device concerned.

EMC – Electro-Magnetic Compatibility. The ability of an equipment or system to function satisfactorily in its electromagnetic environment without introducing intolerable electromagnetic disturbances to anything in that environment.

EMI – Electro-Magnetic Immunity. The ability to maintain a specified performance when the equipment is subjected to disturbance (unwanted) signals of specified levels.

EUT – Equipment Under Test. A device or system being evaluated for compliance that is representative of a product to be marketed.

Page 9 of 72	Report Issued: 6/17/2019	Report File #: 7169006118E-000

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

ITE – Information Technology Equipment. Has a primary function of entry, storage, display, retrieval, transmission, processing, switching, or control of data and/or telecommunication messages and which may be equipped with one or more ports typically for information transfer.

Antenna Port – Port, other than a broadcast receiver tuner port, for connection of an antenna used for intentional transmission and/or reception of radiated RF energy.

Broadcast Receiver Tuner Port – Port intended for the reception of a modulated RF signal carrying terrestrial, satellite and/or cable transmissions of audio and/or video broadcast and similar services.

Optical Fiber Port – Port at which an optical fiber is connected to an equipment.

Signal/Control Port – Port intended for the interconnection of components of a EUT, or between a EUT and local AE and used in accordance with relevant functional specifications (for example for the maximum length of cable connected to it). (Examples include: RS-232, USB, HDMI, Fire Wire)

Wired Network Port – Point of connection for voice, data and signaling transfers intended to interconnect widely dispersed systems by direct connection to a single-user or multi-user communication network.

(Examples include: CATV, PSTN, ISDN, xDSL, LAN and similar networks)

EMC Test Plan – An EMC test plan established prior to testing. See 'Appendix A – EUT & Client Provided Details'.

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Testing Facility

Testing for EMC on the EUT was carried out at TÜV SÜD Canada testing lab near Toronto, Ontario. The testing lab has a calibrated 3m semi-anechoic chamber which allows measurements on a EUT that has a maximum width or length of up to 2m and a height of up to 3m. The chamber is equipped with a turntable that is capable of testing devices up to 3300lb in weight. This facility is capable of testing products that are rated for 120Vac and 240Vac single phase, or devices that are rated for a 208Vac 3 phase input. DC capability is also available for testing. The chamber is equipped with a mast that controls the polarization and height of the antenna. Control of the mast occurs in the control room adjoining the shielded chamber. Radiated emission measurements are performed using a BiLog antenna and a Horn antenna where applicable. Conducted emissions, unless otherwise stated, are performed using a LISN and using the Vertical Ground plane if applicable.

Calibrations and Accreditations

The 3m semi-anechoic chamber is registered with Federal Communications Commission (FCC, CA6844), Industry Canada (IC, 6844A-3) and Voluntary Control Council for Interference (VCCI, R-4023, G-506, C-4498, and T-1246). This chamber was calibrated for Normalized Site Attenuation (NSA) using test procedures outlined in ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The chamber is lined with ferrite tiles and absorption cones to minimize any undesired reflections. The NSA data is kept on file at TÜV SÜD Canada. For radiated susceptibility testing, a 16 point field calibration has been performed on the chamber. The field uniformity data is kept on file at TÜV SÜD Canada. TÜV SÜD Canada Inc. is accredited to ISO 17025 by A2LA with Testing Certificate #2955.02. The laboratory's current scope of accreditation listing can be found as listed on the A2LA website. All measuring equipment is calibrated on an annual or biannual basis as listed for each respective test.

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Testing Environmental Conditions and Dates

Following environmental conditions were recorded in the facility during time of testing:

Date	Test	Initials	Temperature (°C)	Humidity (%)	Pressure (kPa)
June 3, 2019	Power Line Conducted Emissions	ММ	21.9	33.4	101.8
June 3, 2019	Radiated Emissions	MM	21.9	33.4	101.8
June 5, 2019	Electrostatic Disruption	MM	23.9	40.8	101.6
June 3, 2019	Electromagnetic Susceptibility	MM	21.9	33.4	101.8
June 4, 2019	Electrical Fast Transient	MM	22.2	30.4	101.7
June 4, 2019	Lightning Surge	MM	22.2	30.4	101.7
June 3, 2019	Conducted RF Immunity	MM	21.9	33.4	101.8
June 4, 2019	Magnetic Fields Immunity	MM	22.2	30.4	101.7
June 4, 2019	Electrical Power Disturbance 4.1.2.5 a, b, c	MM	22.2	30.4	101.7
June 4, 2019	Electrical Power Disturbance 4.1.2.5 d	MM	22.2	30.4	101.7
June 5, 2019	Electrical Power Disturbance 4.1.2.5 e	MM	23.9	40.8	101.6

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Detailed Test Result Section

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Power Line Conducted Emissions – 4.1.2.9

Purpose

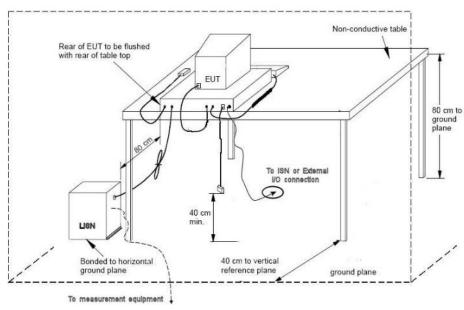
The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT's power line does not exceed the limits listed below as defined in the applicable test standard and measured from a LISN. This helps protect lower frequency radio services such as AM radio, shortwave radio, amateur radio, maritime radio, CB radio, and so on, from unwanted interference.

Limits & Method

The method is as defined in ANSI C63.4. The limits are as defined in FCC Part 15 Section 15.107:

CLASS B

Average L	imits	Quasi-Peak	Limits
150 kHz – 500 kHz	56 to 46* dBμV	150 kHz – 500 kHz	66 to 56* dBµV
500 kHz – 5 MHz	46 dBμV	500 kHz – 5 MHz	56 dBµV
5 MHz – 30 MHz	50 dBμV	5 MHz – 30 MHz	60 dBμV

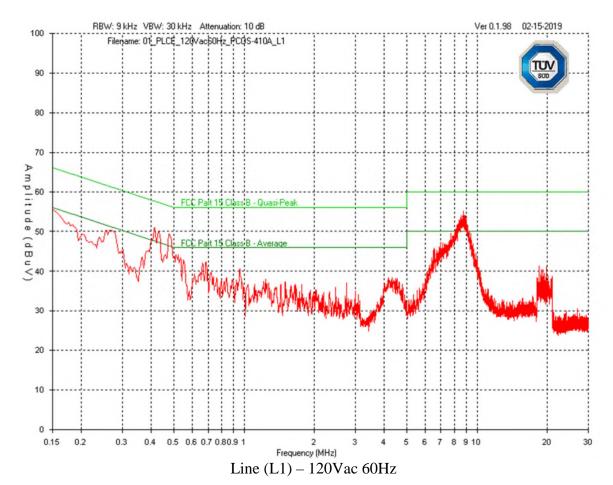

^{*} Decreases linearly with the logarithm of the frequency

Both Quasi-Peak and Average limits are applicable, and each is specified as being measured with a resolution bandwidth of 9 kHz. For Quasi-Peak, a video bandwidth at least three times greater than the resolution bandwidth is used.

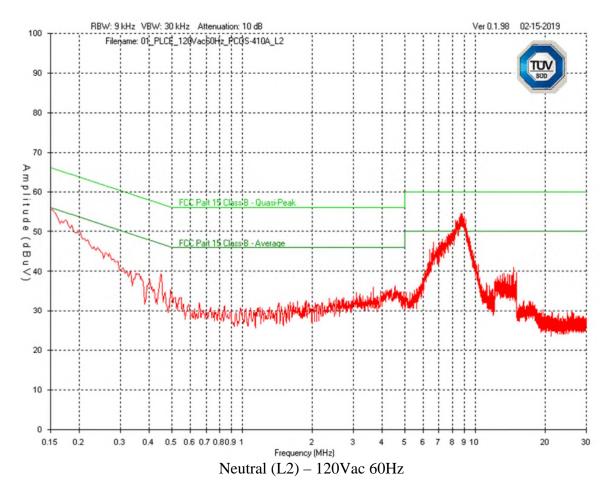
Based on ANSI C63.4 Section 4.2, if the Peak or Quasi-Peak detector measurements do not exceed the Average limits, then the EUT is deemed to have passed the requirements.

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Typical Setup Diagram


Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is ± 2.73 dB with a 'k=2' coverage factor and a 95% confidence level.


Preliminary Graphs

The graphs shown below are maximized peak measurement graphs measured with a resolution bandwidth greater than or equal to the final required detector. This peaking process is done as a worst case measurement and enables the detection of frequencies of concern for final measurement. For final measurements with the appropriate detector, where applicable, please refer to the tables under Final Measurements.

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Final Measurements

Product Category			Class B								
EUT		Image Cast Evolution									
	Supply						120Vac 6	60Hz			
Frequency (MHz)	Detector	Received Signal (dBµV)	Atten Factor (dB)	Cable Factor (dB)	LISN Factor (dB)	Level (dBμV)	QP Limit (dBμV)	AVG Limit (dBμV)	QP Margin (dB)	AVG Margin (dB)	Pass/ Fail
					Line						
8.744	QP	41.4	10	0.1	0.0	51.5	60.0		8.5		Pass
8.744	AVG	34.7	10	0.1	0.0	44.8		50.0		5.2	Pass
0.413	AVG	29.1	10	0.1	0.0	39.2		47.6		8.4	Pass
0.478	AVG	28.7	10	0.1	0.0	38.8		46.4		7.6	Pass
0.153	AVG	17.1	10	0.0	0.1	27.2		55.8		28.6	Pass
0.684	AVG	18.8	10	0.1	0.0	28.9		46.0		17.1	Pass
0.959	AVG	16.2	10	0.1	0.0	26.3		46.0		19.7	Pass
					Neutr	al					
8.786	QP	39.3	10	0.1	0.0	49.4	60.0		10.6		Pass
8.786	AVG	31.8	10	0.1	0.0	41.9		50.0		8.1	Pass
0.153	AVG	16.4	10	0.0	0.1	26.5		55.8		29.3	Pass
0.449	PEAK	29.3	10	0.1	0.0	39.4	56.9	46.9	17.5	7.5	Pass
14.591	PEAK	30.8	10	0.1	0.1	41.0	60.0	50.0	19.0	9.0	Pass
3.663	PEAK	25.9	10	0.1	0.0	36.0	56.0	46.0	20.0	10.0	Pass

Average and Quasi-Peak Emissions Table

Note:

Peak = Peak measurement AVG = Average measurement

QP = Quasi-Peak measurement

See 'Appendix B - EUT, Peripherals and Test Setup Photos' for photos showing the test set-up for the highest line conducted emission

Page 18 of 72 Report Issued: 6/17/2019 Report File #: 7169006118E-000)
---	---

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Spectrum Analyzer	ESL 6	Rohde & Schwarz	Dec. 27, 2017	Dec. 27, 2019	GEMC 160
LISN	FCC-LISN- 50/250- 16-2-01	FCC	Jan. 10, 2018	Jan. 10, 2020	GEMC 302
RF Cable 3m	LMR-400- 3M-50Ω- MN-MN	LexTec	NCR	NCR	GEMC 276
Attenuator 10 dB	10-A-MFN- 10	Bird/Hutton	NCR	NCR	GEMC 322
Emissions Software	0.1.98	TUV SUD Canada, Inc.	NCR	NCR	GEMC 58

FCC_ICES003_CE_Rev1

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Radiated Emissions – 4.1.2.9

Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT does not exceed the limits listed below as defined in the applicable test standard and measured from a receiving antenna. This helps protect broadcast radio services such as television, FM radio, pagers, cellular telephones, emergency services, and so on, from unwanted interference.

Limit(s)

The method is as defined in ANSI C63.4:2014. The limits are as defined in FCC Part 15 Section 15.109:

CLASS B

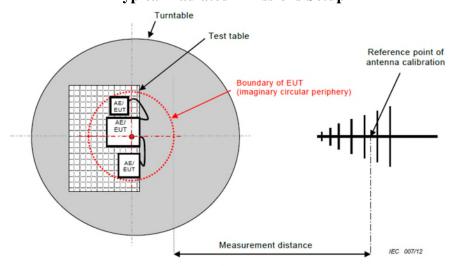
FCC Part 15, Subpart B Limits - 30MHz – 1GHz

Frequency Range ^a	Quasi-Peak Limits - 3mb
30 MHz – 88 MHz	40 dBμV/m
88 MHz – 216 MHz	43.5 dBµV/m
216 MHz – 960 GHz	46 dBμV/m
960 MHz – 1 GHz	54 dBμV/m

Frequency Range ^a	Average Limit - 3m ^c	Peak Limit - 3m ^d
1 GHz and Up	54 dBμV/m	74 dBμV/m

^aThe frequency range scanned is in accordance to FCC Part 15 Section 15.33(b).

Based on ANSI C63.4 Section 4.2, if the Peak detector measurements do not exceed the Quasi-Peak limits, where defined, then the EUT is deemed to have passed the requirements.


^bLimit is with a resolution bandwidth of 120 kHz, a video bandwidth at least three times greater than the resolution bandwidth, and using a Quasi-Peak detector.

^cLimit is with a resolution bandwidth of 1 MHz and using an Average detector.

^dLimit is with a resolution bandwidth of 1 MHz, a video bandwidth at least three times greater than the resolution bandwidth, and using a Peak detector.

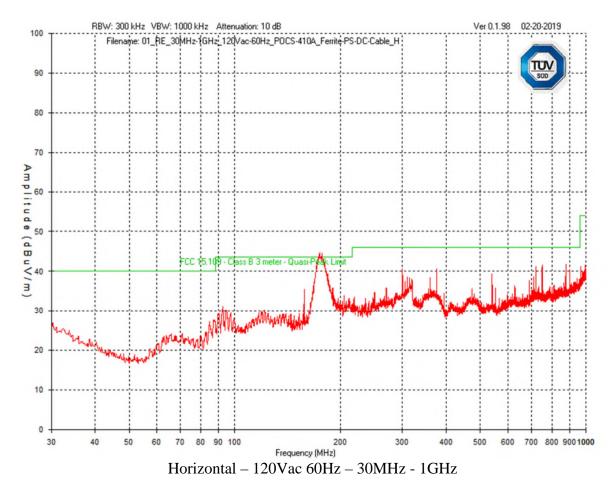
Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Typical Radiated Emissions Setup

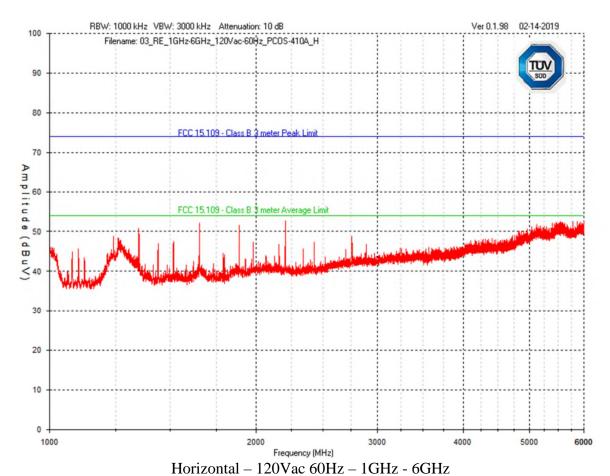
Note: In accordance with FCC Part 15, section 15.31(f)(1), testing was performed at a 3 meter test distance and an extrapolation factor, if applicable, of 20 dB/decade was applied. For example, an extrapolation of 10m to 3m is $20\log(10/3) = 10.5$ dB.

Measurement Uncertainty

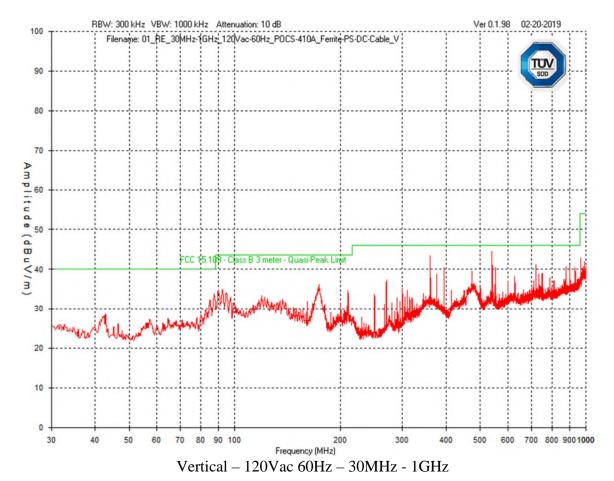
The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is ± 5.04 dB for 30MHz - 1GHz and ± 4.93 dB for 1GHz - 18GHz with a 'k=2' coverage factor and a 95% confidence level.

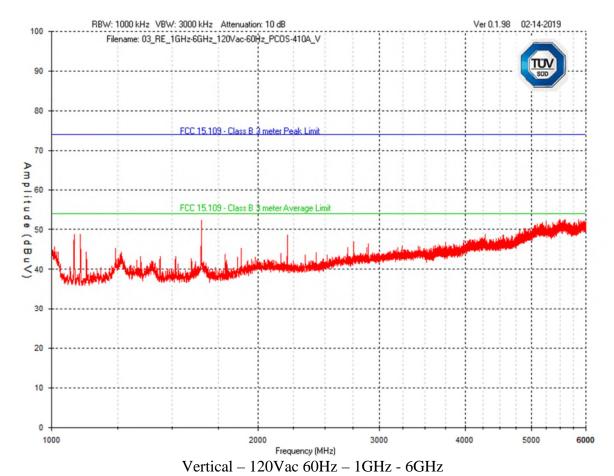

Preliminary Graphs

The graphs shown below are maximized peak measurement graphs measured with a resolution bandwidth greater than or equal to the final required detector over a full 0-360°. This peaking process is done as a worst case measurement and enables the detection of frequencies of concern for final measurement. For final measurements with the appropriate detector, where applicable, please refer to the tables under Final Measurements.


In accordance with FCC Part 15, Subpart B, Section 15.33, the device was scanned to a minimum of a 1 GHz. For devices containing clocks higher than 108 MHz, they were scanned above 1 GHz to meet the requirements of FCC Part 15, Section 15.33.

Page 21 of 72	Report Issued: 6/17/2019	Report File #: 7169006118E-000	1
---------------	--------------------------	--------------------------------	---


Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada


Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Final Measurements

The worst case measurement as listed in the table below appeared at a horizontal antenna height of 115 cm and a table azimuth of 210 degrees, as pictured in Appendix B.

Product Category		Class B								
Supply			120Vac 60Hz							
Frequency (MHz)	Detector	Received Signal (dBµV)	Antenna Factor (dB/m)	Atten Factor (dB)	Cable Factor (dB)	Pre- Amp (dB)	Level (dBµV/m)	Limit (dBμV/m)	Margin (dB)	Pass/ Fail
			Horiz	zontal An	tenna Po	larizatio	n			
174.43	QP	51.1	9.6	6	0.8	-33.7	33.8	43.5	9.7	Pass
875.26	QP	42.7	23.0	6	2.2	-32.5	41.4	46.0	4.6	Pass
750.03	QP	42.9	22.0	6	2.1	-33.0	40.0	46.0	6.0	Pass
720.16	QP	41.8	22.1	6	2.0	-33.1	38.8	46.0	7.2	Pass
375.13	QP	49.9	16.3	6	1.3	-33.5	40.0	46.0	6.0	Pass
300.05	QP	47.3	12.8	6	1.2	-33.6	33.7	46.0	12.3	Pass
2205.58	AVG	47.4	28.4	0	3.4	-34.2	45.0	54.0	9.0	Pass
1653.78	AVG	56.5	25.8	0	2.9	-34.8	50.4	54.0	3.6	Pass
1890.27	AVG	50.6	27.2	0	3.0	-34.4	46.4	54.0	7.6	Pass
1350.04	AVG	51.9	25.5	0	2.6	-35.1	44.9	54.0	9.1	Pass
1241.18	AVG	42.0	25.2	0	2.5	-35.6	34.1	54.0	19.9	Pass
2756.76	AVG	43.0	29.6	0	3.8	-33.4	43.0	54.0	11.0	Pass
				V	ertical					
540.03	QP	45.8	19.7	6	1.6	-33.3	39.8	46.0	6.2	Pass
360.09	QP	47.6	15.9	6	1.2	-33.5	37.2	46.0	8.8	Pass
719.86	QP	28.2	22.1	6	2.0	-33.1	25.2	46.0	20.8	Pass
900.38	QP	32.5	23.7	6	2.2	-32.4	32.0	46.0	14.0	Pass
875.36	QP	38.7	23.0	6	2.2	-32.5	37.4	46.0	8.6	Pass
393.85	QP	49.2	16.3	6	1.4	-33.5	39.4	46.0	6.6	Pass
551.18	QP	44.1	19.4	6	1.6	-33.3	37.8	46.0	8.2	Pass
1653.47	AVG	51.7	25.8	0	2.9	-34.8	45.6	54.0	8.4	Pass
1079.77	AVG	49.9	24.6	0	2.7	-36.2	41.0	54.0	13.0	Pass
1102.92	AVG	48.8	24.7	0	2.7	-36.1	40.1	54.0	13.9	Pass
2205.89	AVG	37.1	28.4	0	3.4	-34.2	34.7	54.0	19.3	Pass

Quasi-Peak and Average Emissions Table

Page 26 of 72	Report Issued: 6/17/2019	Report File #: 7169006118E-000

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Note:

Peak = Peak measurement

QP = Quasi-Peak measurement

AVG = Average measurement

See 'Appendix B - EUT, Peripherals, and Test Setup Photos' for photos showing the test set-up for the highest radiated emission.

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Spectrum Analyzer	ESU 40	Rohde & Schwarz	Jan. 12, 2018	Jan. 12, 2020	GEMC 233
BiLog Antenna	3142-C	ETS	Oct. 19, 2018	Oct. 19, 2020	GEMC 137
Horn Antenna 1 – 18 GHz	AH-118	Com-Power Corporation	July 12, 2017	July 12, 2019	GEMC 214
Attenuator 6 dB	612-6-1	Meca Electronics, Inc	NCR	NCR	GEMC 286
Pre-Amp	LNA-1450	RF Bay Inc.	Oct. 18, 2018	Oct. 11, 2020	GEMC 221
Pre-Amp 1 – 26.5 GHz	HP 8449B	HP	Nov. 15, 2017	Nov. 15, 2019	GEMC 189
RF Cable 10m	LMR-400-10M- 50Ω-MN-MN	LexTec	NCR	NCR	GEMC 274
RF Cable 2m	Sucoflex 104A	Huber+Suhner	NCR	NCR	GEMC 271
Emissions Software	0.1.98	TUV SUD Canada, Inc.	NCR	NCR	GEMC 58

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Electrical Power Disturbance - 4.1.2.5

Purpose

An AC powered device may be subjected to voltage dips, short interruptions or other voltage variations in the power line. Such conditions are mainly caused by faults or changes in the network due to sudden large changes in load, or when a brown out or a black out condition occurs. These voltage dips can also occur with power supplies that are not well regulated such as emergency diesel AC generators. This test simulates the occurrence of these conditions and subjects the EUT to this phenomenon.

Application Level Requirements

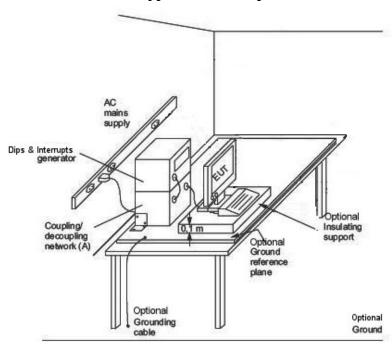
This test is performed in accordance with the methodology defined in IEC 61000-4-11. As per VVSG 1.0 (2005) Vol. 1, the following dip and interruption levels apply:

Voltage Dip Level	Duration	Duration @ 60Hz [Cycles]
30% (36 Vac)	0.01s	0.6
60% (72 Vac)	0.1s / 1.0s	6 / 60
100% (120 Vac)	0.5	300

Voltage Surge Level	Duration	Duration @ 60Hz [Cycles]
85% (102 Vac)	4 hours	14400
115% (138 Vac)	4 hours	14400

Surges of +15% line variations of nominal line voltage and electrical power increases of 7.5% and reductions of 12.5% of nominal specified power supply for a period of up to four hours at each level.

The voltage level in brackets is the residual voltage of the voltage dip applied and presumes a normal operating voltage of 120 Vac and a frequency of 60Hz.


The test is carried out at phase angles of 0°, 90°, and 270° of the AC with 5 repetitions applied at each of the dips and interrupts listed in the table above.

No disruption of normal operation or loss of data is applied to this test.

Page 28 of 72	Report Issued: 6/17/2019	Report File #: 7169006118E-000

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Typical Test Setup

Application Level Accuracy

As per IEC 61000-4-11, the voltage must be $\pm 5\%$ of the voltage stated to be applied. The frequency must be kept within $\pm 2\%$ of the stated frequency.

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Test Results

The EUTs passed the requirements. The EUTs met the criteria's listed above in the application level requirements.

No anomalies were observed for the surges and no disruption to operation or data loss occurred.

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Immunity Generator	EMC Pro Plus	Keytek Thermo Corp.	Feb. 6, 2019	Feb. 6, 2021	GEMC 188
Immunity Software	CEWare 32 V4.1	Thermo Fisher Scientific	NCR	NCR	GEMC 182
Variac	PWRSTA 3PN126	Powerstat	NCR	NCR	GEMC 6032
Digital Multi-Meter	73 III	Fluke	Jul. 13, 2018	Jul. 13, 2019	CANE00016
Stopwatch	14-649-11	Fisherbrand	Jul. 6, 2019	Jul. 6, 2020	CANE00221

IEC61000-4-11_DipsImmunity-C24_Rev3

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

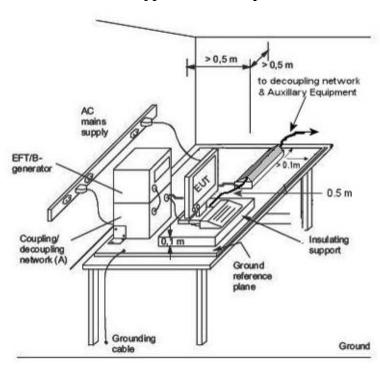
Electrical Fast Transients / Bursts - 4.1.2.6

Purpose

Electrical Fast Transients is a series of bursts consisting of a number of fast transients, which in a typical application environment, can be coupled into the supply and onto the I/O lines of the EUT. These transient signals usually arise from nearby switching circuitry such as a light switch, relay bounces, electric motor noise, interruption of inductive loads, etc. This test is to verify that the EUT is immune to such transient disturbances based on the applicable test levels. This test, however, does not guarantee that the EUT will not experience higher level burst impulses during its operation, which may cause the EUT to fail.

Application Level Requirement

This test is performed in accordance with the methodology defined in IEC 61000-4-4. The voltage waveform applied has the following characteristics:


- Pulse rise time: $5 \text{ns} \pm 30\%$
- Pulse duration (to 50% value): $50 \text{ns} \pm 30\%$
- Pulse repetition frequency 100kHz
- Burst duration should be $15 \text{ms} \pm 20 \%$
- Burst period should be 300ms ± 20%

Bursts are applied for 1 minute each at the positive and the negative polarity to the mains power input (common mode) and to each applicable I/O line.

A test level of $\pm 2kV$ is applied to the power supply port(s) via a coupling and decoupling network and $\pm 1kV$ to each applicable I/O line via a Capacitive Coupling Clamp. No disruption of normal operation or loss of data is to occur during the performance of this test.

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Typical Test Setup

Application Level Accuracy

As per IEC 61000-4-4, the test level is specified as being within $\pm 10\%$ into a 50Ω load and $\pm 20\%$ into a 1000Ω load.

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Test Results

The EUT passed the requirements. The EUT met Criteria B as defined in "Appendix A – EUT & Client Provided Details". No anomalies were observed.

Test Voltage	Repetition Rate	Coupling Lines	Result
±2kV	100kHz	L – N – PE	Pass

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Immunity Generator	NSG 3060	Teseq	Aug 20, 2018	Aug 20, 2020	GEMC 317
Coupling/ Decoupling Network	CDN 3061	Teseq	Aug 20, 2018	Aug 20, 2020	GEMC 318
Immunity Software	WIN 3000 V1.5.1	Teseq	NCR	NCR	GEMC 320

IEC61000-4-4_EFTB_Rev4

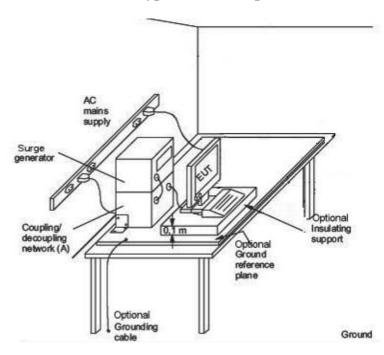
Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Lightning Surge - 4.1.2.7

Purpose

Surge occurs when a high energy disturbance takes place on the power lines, or less frequently, I/O lines and can cause significant temporary increase in current and/or voltage. These disturbances can arise during a nearby lightning strike, circuit trips, short-circuits on the same power line that the equipment is connected to, etc. The sudden rise in voltage over a very short period of time could cause damage to the components of the EUT and this test assesses the immunity of the EUT to such transient waves. This test differs from Electrical Fast Transients / Bursts in that this waveform, characterized by the rapid increase of current and/or voltage followed by a slower decrease, has a longer wave duration that could allow damage to the EUT. This test does not guarantee that the EUT will not be exposed to a higher level of surge energy during its operation, which may cause the EUT to fail. This test also does not ensure operation of the EUT in the presence of direct lightning effects.

Application Level Requirement


This test is performed in accordance with the methodology defined in IEC 61000-4-5. Surges are simulated using a waveform generator and the characteristics of the waveform generated are as follows:

- Rise time of 1.2µs and wave duration of 50µs (to 50% value) into an open circuit.
- Rise time of 8µs and wave duration of 20µs (to 50% value) into a short circuit.
- Dwell time of 60 seconds between each surge.
- 5 surges in the positive and 5 surges in the negative polarity.
- For AC systems, the surge pulses are applied at 0°, 90°, 180° and 270°.
- For AC systems, Line to Ground is performed at the same amount as the Line to Line voltage.

For AC mains supply, a test level of $\pm 2kV$ Line to Line and $\pm 2kV$ Line to Ground is applied to the power supply port(s) via a coupling and decoupling network. Lower test levels are evaluated first before applying the required test level. No disruption of normal operation or data loss is allowed as applied to this test.

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Typical Test Setup

Application Level Accuracy

As per IEC 61000-4-5, the level is specified as being within $\pm 10\%$ for open circuit voltage calibration or $\pm 10\%$ for short circuit current calibration. The EUTs input impedance, or whether Line – PE or Line – Line is being performed, combined with the calibrated generators output impedance, will affect the timing and voltage/current of the waveform applied to the EUT.

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Test Results

The EUT passed the requirements. The EUT did not encounter any deviation from normal operation or data loss.

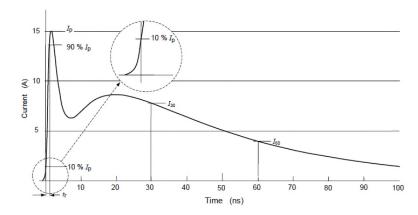
Test Voltages	Phase Angles	Number of Surges	Coupling Lines	Result
±0.5kV, ±1kV, ±2kV	0°, 90°, 180°, 270°	5 per polarity	L – PE	Pass
±0.5kV, ±1kV, ±2kV	0°, 90°, 180°, 270	5 per polarity	N – PE	Pass
±0.5kV, ±1kV, ±2kV	0°, 90°, 180°, 270°	5 per polarity	L – N	Pass

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Immunity Generator	NSG 3060	Teseq	Aug 20, 2018	Aug 20, 2020	GEMC 317
Coupling/ Decoupling Network	CDN 3061	Teseq	Aug 20, 2018	Aug 20, 2020	GEMC 318
Immunity Software	WIN 3000 V1.5.1	Teseq	NCR	NCR	GEMC 320

IEC61000-4-5_Surge_Rev4

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

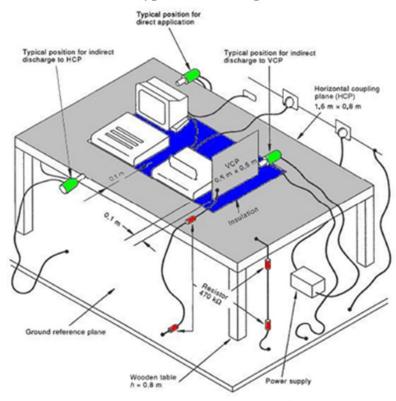

Electrostatic Disruption - 4.1.2.8

Purpose

The purpose of this immunity test is to apply a static electricity discharge from the operator to the EUT or create a nearby discharge field. An example of this discharge can be seen in low humidity conditions when a person touches an object and creates a small spark. This spark could potentially be harmful to the operation of the EUT. The contact method, with related reduced voltages, has been shown to be roughly equivalent to air discharges in severity and due to its reproducibility, contact is the preferred test method. Air discharge is used where contact discharge cannot be applied since the discharge point is significantly insulated and the insulation cannot be easily broken through. This test ensures a minimum level of immunity which is likely to occur in a normal usage environment. This test does not guarantee that the EUT will not be exposed to higher discharge levels which could cause it to fail.

Application Level Requirement

This test is performed in accordance with the methodology defined in IEC 61000-4-2. Ten hits in the positive and negative polarity are applied at each defined discharge point on the EUT. These are called direct discharges, regardless of contact or air being applied. Horizontal Coupling Plane (HCP) and Vertical Coupling Plane (VCP) discharges are also applied and these are called indirect discharges. A typical test setup representation is shown on the following page. A photograph of the actual test setup is shown in Appendix B. See the results table under Test Results for the actual EUT discharge points.



A level of $\pm 8kV$ contact or $\pm 15kV$ air, where applicable, is applied to each defined discharge point. For air discharge testing, the test is applied at the lower test levels first. No disruption to normal operation or loss of data is applied to this test. However, all anomalies, if any, are noted.

Page 37 of 72	Report Issued: 6/17/2019	Report File #: 7169006118E-000

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Typical ESD Setup

Application Level Accuracy

Contact discharge: $\pm 15\%$ for the first peak current, $\pm 5\%$ for the output voltage and $\pm 25\%$ for the rise time as measured at the discharge electrode tip of ESD generator.

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Test Results

The EUTs passed the requirements. The EUTs encountered no disruption of normal operation and no loss of data. No anomalies were observed.

Location	Test Voltage	Discharge Type	Pass / Fail
1. HCP	±2kV, ±4kV, ±8kV	Contact	Pass
2. VCP	±2kV, ±4kV, ±8kV	Contact	Pass
3. Front enclosure screw – left	±2kV, ±4kV, ±8kV	Contact	Pass
4. Front enclosure screw – right	±2kV, ±4kV, ±8kV	Contact	Pass
5. Front security tab – left	±2kV, ±4kV, ±8kV	Contact	Pass
6. Front security tab – right	±2kV, ±4kV, ±8kV	Contact	Pass
7. Security FOB outer shell	±2kV, ±4kV, ±8kV	Contact	Pass
8. Enclosure – ballot entry seam	±2kV, ±4kV, ±8kV, ±15kV	Air	Pass (No Discharge)
9. Enclosure button – Cast	±2kV, ±4kV, ±8kV, ±15kV	Air	Pass (No Discharge)
10. Enclosure button – Return	±2kV, ±4kV, ±8kV, ±15kV	Air	Pass (No Discharge)
11. Enclosure – top upper left	±2kV, ±4kV, ±8kV, ±15kV	Air	Pass (No Discharge)
12. Enclosure – top upper right	±2kV, ±4kV, ±8kV, ±15kV	Air	Pass (No Discharge)
13. Enclosure – top upper center	±2kV, ±4kV, ±8kV, ±15kV	Air	Pass (No Discharge)
14. AC Power supply enclosure – top	±2kV, ±4kV, ±8kV, ±15kV	Air	Pass (No Discharge)
15. AC Power supply enclosure – back	±2kV, ±4kV, ±8kV, ±15kV	Air	Pass (No Discharge)
16. AC Power supply enclosure – seam	±2kV, ±4kV, ±8kV, ±15kV	Air	Pass
17. AC Power supply enclosure – LED	±2kV, ±4kV, ±8kV, ±15kV	Air	Pass
18. AC Power supply – cable	±2kV, ±4kV, ±8kV, ±15kV	Air	Pass (No Discharge)
19. DC power cable – entry	±2kV, ±4kV, ±8kV, ±15kV	Air	Pass

Page 39 of 72	Report Issued: 6/17/2019	Report File #: 7169006118E-000	
---------------	--------------------------	--------------------------------	--

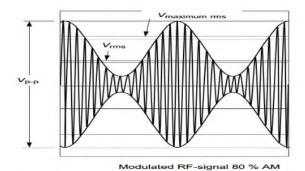
Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
ESD Simulator	NSG 437	Teseq	Dec. 20, 2018	Dec. 20, 2020	GEMC 130
ESD HCP	80CM x 160CM	TUV SUD Canada, Inc	NCR	NCR	GEMC 50
ESD VCP	50CM x 50CM	TUV SUD Canada, Inc	NCR	NCR	GEMC 51
ESD 470K A	2x470kΩ 100CM	TUV SUD Canada, Inc	NCR	NCR	GEMC 52
ESD 470K B	2x470kΩ 100CM	TUV SUD Canada, Inc	NCR	NCR	GEMC 53

IEC61000-4-2_ESD_Rev4

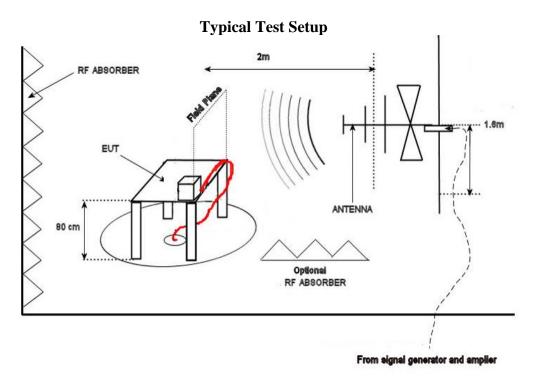
Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada


Electromagnetic Susceptibility - 4.1.2.10

Purpose

The EUT will likely be exposed to intentional sources of electromagnetic radiation during its regular application. Sources of such radiation can be cellular phones, FM radio, television, remote car alarms, garage door openers, and other broadcast transmissions. These sources of radiation are licensed or certified for broadcast and therefore, the EUT should be immune to their RF energy. This test assesses the immunity of the EUT to the applicable field strength test level. This test, however, does not guarantee that the EUT will not be exposed to higher level fields during its operation, which may cause it to fail.

Application Level Requirement


This test is performed in accordance with the methodology defined in IEC 61000-4-3. The immunity test is performed over the frequency range of 80MHz to 1.0GHz. As the frequency range is swept incrementally, the step size used is calculated at 1% of the preceding frequency value, rounded down to the nearest kHz. Known clock frequencies, local oscillators, etc. are analyzed separately, where applicable, and these are defined in "Appendix A – EUT & Client Provided Details". The field uniformity is calibrated at 10V/m and a modulation of 80% AM 1kHz sine wave is applied during the application of the RF energy at each frequency.

The RF field is applied in both horizontal and vertical antenna polarization and four sides of the EUT are subjected to this RF field. The dwell time used for each frequency is 3 seconds. Forward power is monitored and records are kept on file at TUV SUD Canada Inc. An isotropic field probe is also placed in near proximity of the EUT to verify the application of the RF field. Performance Criteria level A as defined in "Appendix A – EUT & Client Provided Details" is applied to this test.

Page 41 of 72	Report Issued: 6/17/2019	Report File #: 7169006118E-000

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Application Level Accuracy

As per IEC 61000-4-3, the RF field is specified as 0dB to +6dB for at least 12 of the 16 calibration points. For a 10 V/m field, this allows for the EUT to be subjected to a field of 10 V/m to 20 V/m with at least 75% coverage at this level.

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Test Results

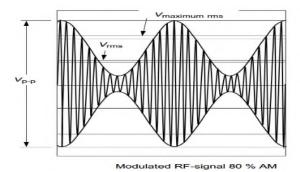
The EUTs encountered no disruption of normal operation or data loss. No other anomalies were observed.

Input Voltage and Frequency	120Vac, 60Hz	
Frequency Range and Field Strength	80MHz – 1GHz 10V/m (80% AM)	
Sweep Step	1% of Fundamental	
Dwell Time	3 sec.	
Result	Pass	

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Signal Generator	SMHU	Rohde & Schwarz	Mar. 06, 2019	Mar. 06, 2021	GEMC 155
BiLog Antenna	3142-C	ETS	Oct. 19, 2018	Oct. 19, 2020	GEMC 8
Power Amplifier	150W1000	AR	NCR	NCR	GEMC 179
Electric Field Probe Kit	EP 601	Narda S.T.S	Oct. 10, 2018	Oct. 10, 2020	GEMC 304
Immunity Software	V224	TUV SUD Canada, Inc.	NCR	NCR	GEMC 57

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

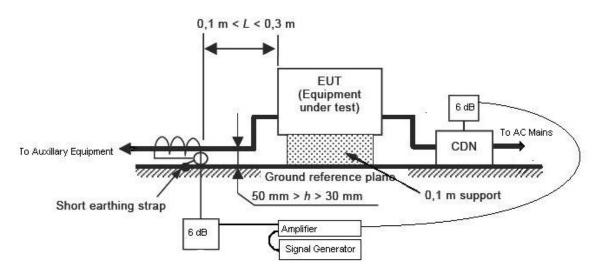

Conducted RF Immunity - 4.1.2.11

Purpose

The EUT will likely be exposed, in some way, to low frequency intentional sources of RF energy during its regular application. Sources of such radiations can be AM radio, shortwave radio, CB transmissions, and other low frequency broadcast transmissions. These sources of radiations are licensed or certified for broadcast and therefore, the EUT should be immune to their RF energy. Due to the properties of radio, the power or I/O lines on the EUT would likely be the passive receiving antenna that induces the disturbance to the EUT. Since this is the main method of coupling at this frequency range, the direct application of the RF energy to the line being tested is used. At this frequency range and level, this method is easier to produce and reproduce in a laboratory environment than subjecting the EUT to an equivalent RF field.

Application Level Requirement

This test is performed in accordance with the methodology defined in IEC 61000-4-6. I/O cables are tested using a bulk current injection probe and power lines are tested using a coupling and decoupling network. The immunity test is performed over the frequency range of 150kHz to 80MHz. As the frequency range is swept incrementally, the step size used is calculated at 1% of the preceding frequency value, rounded down to the nearest kHz. Known clock frequencies, local oscillators, etc. are analyzed separately, where applicable, and these are defined in "Appendix A – EUT & Client Provided Details". The test level is calibrated at 10Vrms and a modulation of 80% AM 1kHz sine wave is applied during the application of the RF energy at each frequency.



The dwell time used for each frequency is 3 seconds. A current probe is placed between the coupling device and the EUT to verify the application of the RF energy. No disruption to normal operation or data loss allowed is applied to this test.

Page 44 of 72 Report Issued: 6/17/2019 Report File #: 7169006118E-000	Report File #: 7169006118E-000
---	--------------------------------

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Typical Test Setup

Application Level Accuracy

As per IEC 61000-4-6, the CDN must meet a common mode impedance $|Z_{CE}|=150\Omega\pm20\Omega$ for 150kHz to 26MHz and $|Z_{CE}|=150\Omega+60\Omega$ or 150 Ω - 45 Ω for 26MHz to 80MHz. During tests using the bulk current injection probe, the impedance of each cable will affect the current injected and therefore, current was monitored. The calibration is performed according to IEC 61000-4-6 which allows for $\pm2dB$.

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Test Results

The EUTs passed the requirements. The EUTs met Criteria A as defined in "Appendix A – EUT & Client Provided Details". No anomalies were observed.

Input Voltage and Frequency	120Vac 60Hz	
Frequency Range and Signal Strength	150kHz - 80MHz 10Vrms (80% AM)	
Sweep Step	1% of Fundamental	
Dwell Time	3 sec.	
AC Mains	Pass	
Result	Pass	

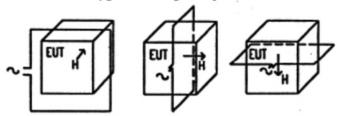
Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Power Line CDN	FCC-801- M3-16A	FCC	Feb. 23, 2018	Feb. 23, 2020	GEMC 138
Power Amplifier	75A250A	AR	NCR	NCR	GEMC 14
Signal Generator	SMY01	Rohde & Schwarz	Feb. 21, 2018	Feb. 21, 2020	GEMC 6330
Power Attenuator 6dB	100-A-FFN- 06	Bird	NCR	NCR	GEMC 48
Immunity Software	V223	TUV SUD Canada, Inc	NCR	NCR	GEMC 57

IEC61000-4-6_ConductedImmunity_Rev4

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Magnetic Fields Immunity - 4.1.2.12


Purpose

A magnetic field with the frequency of the power line is generated around the EUT. In practice, the EUT will be subjected to power frequency magnetic fields from nearby power lines, transformers, or devices such as televisions or monitors. Since the EUT is usually used in conjunction with other electrical equipment, it is subjected to the steady state magnetic fields. These are magnetic fields that the device is exposed to under normal operating conditions. These fields have lower field strengths compared to typical transient magnetic fields.

Application Level Requirement

This test is performed in accordance with the methodology defined in IEC 61000-4-8. Three orthogonal axis of the EUT are subjected to the field within the magnetic loop. The transient magnetic field, if applicable, is tested for 1 minute while the steady state magnetic field is tested for 15 minutes. The frequency applied is 60 Hz. A magnetic field strength of 30 A/m is applied to the EUT in each orthogonal axis. No disruption to normal operation or loss of data is applied to this test.

Application Level Accuracy

As per IEC 61000-4-8, the field over the area that the EUT occupies within the loop must be calibrated to be within ± 3 dB. For a field strength of 3 A/m, this means that the empty calibrated field strength can be between 2.1 A/m and 4.2 A/m over the area that the EUT occupies.

Test Results

The EUT passed the requirements. The EUT did not encounter any disruption of normal operation or loss of data. No anomalies were observed.

When a 60 Hz field was applied, the EUTs were powered at 120 Vac 60 Hz, battery mode and the field strength at 30 A/m.

Page 47 of 72	Report Issued: 6/17/2019	Report File #: 7169006118E-000

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Magnetic Loop	F-1000-4- 8/9/10-L-1M	FCC	NCR	NCR	GEMC 22
AC Current Source	AVU-5-30- AV-01	Criterian Instruments Ltd	Jan. 3, 2019	Jan. 3, 2020	CANE00003
Clamp Meter	365	Fluke	Nov. 19, 2018	Nov. 19, 2019	GEMC 260
Milligauss Meter	4180	F W Bell	Oct. 10, 2018	Oct. 10, 2020	GEMC 74

IEC61000-4-8_MagneticImmunity_Rev3

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Appendix A – EUT & Client Provided Details

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

General EUT Description

	Client Details
Organization / Address	Pro V&V
	700 Boulevard South
	Huntsville, Al. 35803
Contact	Michael L. Walker
Phone	256-713-1111
Email	michael.walker@provandv.com
Manufacturer [Details (if not same as above)
Organization / Address	Dominion Voting Systems/215 Spadina Ave, Toronto, ON M5T 2C7
Contact	Aamer Chaudhry
Phone	416.762.8683 x 227
Email	aamer.chaudhry@dominionvoting.com
EUT (Equip	ment Under Test) Details
EUT Name	ICP2 V1
EUT Model / SN	PCOS-330A
Software version	5.5.1.8
Equipment category	Voting Machines
EUT is powered using	AC 120VAC and back-up battery
If mains powered, how many	1
plugs?	No
Input voltage range(s) (V)	100 ~ 240VAC
Frequency range(s) (Hz)	50 ~ 60Hz
Rated input current (A)	1.5 A
Nominal power consumption (W)	70 W
Number of power supplies in EUT	1
Transmits RF energy? (describe)	No
Basic EUT functionality	Voting Machine
description	AC and hatten, made
Modes of operation	AC and battery mode
Step by step instructions for setup and operation	Customer setup
Customer to setup EUT on site?	Yes
EUT response time (ms)	N/A
EUT setup time (min)	5 min
LOT Setup time (IIIIII)	JIIIII

Page 50 of 72	Report Issued: 6/17/2019	Report File #: 7169006118E-000

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Frequency of all clocks present in EUT	Highest clock 536 MHz
I/O cable description Specify length and type	No I/O lines to be tested
Available connectors on EUT	Audio Output, USB 2.0, Serial port
Peripherals required to exercise EUT Ex. Signal generator	N/A
Dimensions of product	L 430mm W 330mm H 100mm
Method of monitoring EUT and description of failure for immunity.	Run voting test, without disruption of normal operation or loss of data.

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

EUT Functional Description

Voting Ballot Tabulator.

EUT Configuration

Please see Appendix B for a picture of the unit running in normal conditions.

• Cables and earthing were connected as per manufacturer's specification.

Operational Setup

Peripheral devices were attached to the EUT for its test operation. However, this report does not represent compliance of these peripheral device(s) in any way.

• Turn on device, enter test mode using voter and admin cards

Modifications for Compliance

No modifications were made during testing for the sample to achieve compliance with the testing requirements.

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Appendix B – EUT, Peripherals, and Test Setup Photos

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Figure 1 – EUT Front Close Up

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Figure 2 – EUT Rear Close Up

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Figure 3 – EUT label

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Figure 4 – EUT Power Supply

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Figure 5 – Power Line Conducted Emissions Setup – Photo 1

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Figure 6 – Power Line Conducted Emissions Setup – Photo 2

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

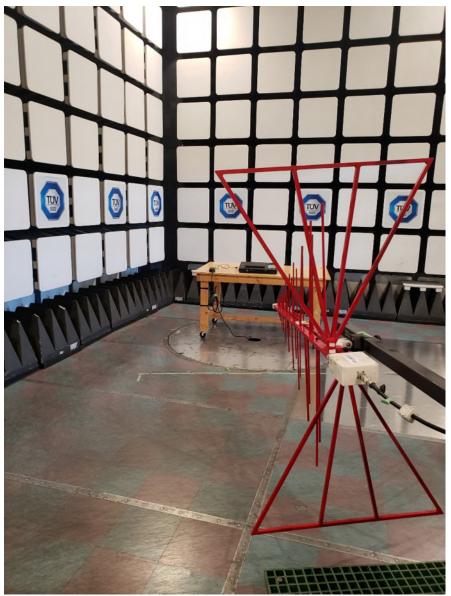


Figure 7 – Radiated Emissions Setup – Photo 1 30MHz – 1GHz

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

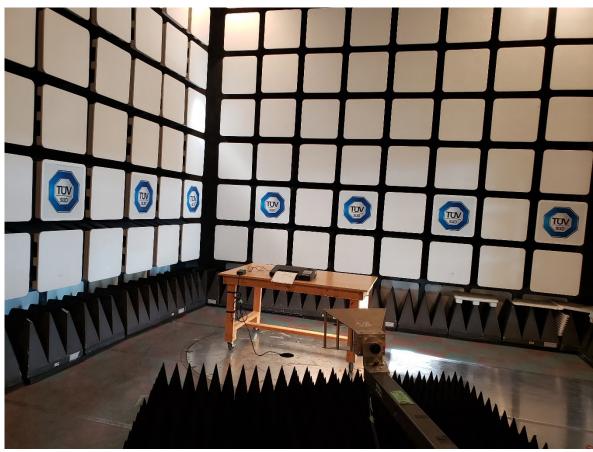


Figure 8 – Radiated Emissions Setup – Photo 2 1GHz – 6GHz

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Figure 9 – Electrical Power Disturbance – Surges of ±15% Line Variations

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Figure 10 – Electrical Fast Transient / Lightning Surge

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Figure 11 – Voltage Dips

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Figure 12 – Electrical Power Disturbance – power increase & reduction

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Figure 13 – Electrostatic Disruption Setup

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Figure 14 – Electromagnetic Susceptibility Setup – Photo 1

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Figure 15 – Electromagnetic Susceptibility Setup – Photo 2

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Figure 16 – Conducted RF Immunity Setup

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Figure 17 – Magnetic Fields Immunity

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Appendix C - Product Marking

Client	Pro V&V Inc.	
Product	ICP2 V1	TÜV
Standard(s)	2015 VVSG Volume I; Version 1.1 2015 VVSG Volume II; Version 1.1	Canada

Product Marking

Products marketed in the US:

For products that are not intentional radiators and are subject to the 'verification' procedure in the US, according to the FCC, the product shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules.

Operation is subject to the following two conditions:
(1) this device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause undesired operation.

Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified is required to be affixed only to the main control unit.

When the device is so small or for such use that it is not practicable to place the statement specified on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed.

In this case, the following statement may accompany the product:

"This device complies with Part 15 of the FCC Rules. See manual for details"

Also, the FCC identifier or other unique identifier such as a model number and serial number, as appropriate, must be displayed on the device.

Products marketed within Canada:

According to Industry Canada, the following statement shall be permanently affixed to the ITE or displayed electronically and its text must be clearly legible. If the dimensions of the device are too small or if it is not practical to place the label on the device and electronic labeling has not been implemented, the label shall be, upon agreement with Industry Canada, placed in a prominent location in the user manual supplied with the ITE.

* Insert either "A" or "B" but not both to identify the applicable Class of ITE.

Page 72 of 72	Report Issued: 6/17/2019	Report File #: 7169006118E-000