Test Report No. ITR-PR100763 Page 1 of 60 www.nts.com

Test Report of Full Compliance Immunity Testing Performed on the ClearAccess and ClearCast

Issue Date: 08 August 2019

- Prepared for: **Pro V&V, Inc.** 700 Boulevard South Huntsville, AL 35802
- Prepared by: National Technical Systems NTS Longmont 1736 Vista View Drive Longmont, Colorado 80504

This report and the information contained herein represents the results of testing of only those articles/products identified in this document and selected by the client. The tests were performed to specifications and/or procedures approved by the client. National Technical Systems ("NTS") makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it present any statement whatsoever as to the merchantability or fitness of the test article or similar products for a particular purpose. This document shall not be reproduced except in full without written approval from NTS.

Test Report No. ITR-PR100763

SIGNATURES

Prepared by:

Technical Writer, Greg Gagne

О

Date: 08 August 2019

h /d

Reviewed by:

Technical Reviewer, John Tate

Date: 08 August 2019

REVISIONS

Revision	Reason for Revision	Date
NR	Initial Release	08 August 2019

Table of C	ontents
1.0	ADMINISTRATIVE DATA
1.1	PURPOSE OF TESTS6
1.2	DESCRIPTION OF TEST ITEM
1.3	MANUFACTURER6
1.4	REFERENCE DOCUMENTS6
1.5	QUANTITY OF ITEMS TESTED 6
1.6	SECURITY CLASSIFICATION
1.7	TESTS CONDUCTED BY7
1.8	DISPOSITION OF TEST ITEMS7
1.9	TEST ENVIRONMENT
1.9.1	IMMUNITY TEST SITE7
1.9.2	MEASUREMENT UNCERTAINTY 8
1.10	TEST APPARATUS8
1.11	SOURCE INSPECTION
1.12	PURCHASE ORDER NUMBER 8
2.0	TEST RESULTS SUMMARY9
3.0	ELECTROSTATIC DISCHARGE TEST 10
3.1	REFERENCES
3.2	SERIAL NUMBERS
3.3	TEST PROCEDURE
3.4	SPECIAL CONFIGURATIONS
3.5	TEST RESULTS
4.0	RADIATED RF IMMUNITY TEST 11
4.1	REFERENCES 11
4.2	SERIAL NUMBERS
4.3	TEST PROCEDURE
4.4	SPECIAL CONFIGURATIONS
4.5	TEST RESULTS 11
5.0	ELECTRICAL FAST TRANSIENT/BURST TEST 12

5.1	REFERENCES	. 12
5.2	SERIAL NUMBERS	. 12
5.3	TEST PROCEDURE	. 12
5.4	SPECIAL CONFIGURATIONS	. 12
5.5	TEST RESULTS	. 12
APPE	NDIX A: ELECTROSTATIC DISCHARGE TEST DATA	. 13
APPE	NDIX B: RADIATED RF IMMUNITY TEST DATA	. 22
APPE	NDIX C: ELECTRICAL FAST TRANSIENT/BURST TEST DATA	. 35
APPE	NDIX D: TEST LOG	. 40
APPE	NDIX E: PRODUCT DATA SHEET	. 47
APPE	NDIX F: LABORATORY ACCREDITATIONS	. 54
END (OF REPORT	. 60

1.0 ADMINISTRATIVE DATA

1.1 PURPOSE OF TESTS

This report documents the test efforts performed on the ClearAccess/ClearCast to verify compliance to EAC 2005 VVSG. This was a formal qualification test and was conducted from 16-24 July 2019.

The normative references of this standard define the test methods used for the immunity testing. These standards are contained in Table 1-1.

Requirement	Specification	Test Method	Performance Criteria
EAC 2005 VVSG	Electrostatic Discharge	EN 61000-4-2: 2009	(B) Self-
			Recovering
	Radiated RF Immunity	EN 61000-4-3:, 2006 +	(A) No
		A1: 2008 + A2: 2010	Degradation
	Electrical Fast	EN 61000-4-4: 2004 +	(B) Self-
	Transient/Burst	A1: 2010	Recovering

Table 1-1: Reference Documents and Performance Criteria

1.2 DESCRIPTION OF TEST ITEM

The UUT is a ballot marking device (Configuration 1)/precinct tabulator (Configuration 2) designed for use in "voting during elections" environments.

1.3 MANUFACTURER

Clear Ballot Group 700 Boulevard South, Suite 102 Huntsville, AL 35802

1.4 <u>REFERENCE DOCUMENTS</u>

- 1. Quotation Number OP0521624 1
- 2. EAC 2005 VVSG
- 3. ISO 17025:2005

1.5 QUANTITY OF ITEMS TESTED

Quantity	Test Item Description	Part/Model Numbers	Serial Numbers
1	ClearAccess	ELO E(AIO Desktop),	A17C002919,
		B432(Oki printer),	AK76022990A0,
		PY3JN2000184	PY3JN2000184
		(CyberPower UPS)	
1	ClearCast	Model D	041902577

1.6 SECURITY CLASSIFICATION

Unclassified

1.7 <u>TESTS CONDUCTED BY</u>

National Technical Systems NTS Longmont 1736 Vista View Drive Longmont, Colorado 80504

1.8 DISPOSITION OF TEST ITEMS

Returned to:

Pro V&V, Inc. 700 Boulevard South Huntsville, AL 35802

1.9 <u>TEST ENVIRONMENT</u>

1.9.1 Immunity Test Site

The immunity testing was performed at NTS's test facility in Longmont, Colorado. The radiated field immunity testing was performed in a ferrite lined, shielded enclosure. The enclosure is 10' high x 12' wide x 20' long in size and meets the field uniformity requirements of IEC 61000-4-3. The size of the chamber allows 2-meter separation between the antenna and the UUT.

From 80 MHz to 1 GHz, field uniformity deviation for NTS's completely anechoic lined chamber (CALC) is a maximum of 7.4 dB for three frequencies for vertical polarization (1.1% of all test frequencies) and 7.3 dB for two frequencies for horizontal polarization (0.8% of all test frequencies). This is allowed by IEC 61000-4-3, as follows:

"In the frequency range up to 1 GHz, a tolerance greater than+ 6 dB, up to +10 dB, but not less than -0 dB is allowed for a maximum of 3% of the test frequencies, provided that the actual tolerance is stated in the test report." (*Ref. IEC 61000-4-3, Ed. 3.2 (2010), Section 6.2*)

All other immunity testing was performed on a ground reference plane measuring 3.05 m by 3.05 m, or 9.3 m². The ground plane was made of 90 mil steel and extended beyond the UUT by 0.5 meters and all sides. It was bonded to the protective earth ground of the test facility and complied with all applicable standards.

1.9.2 Measurement Uncertainty

The measurement uncertainty for NTS's immunity test facility complies with the requirements defined in CISPR 16. The complete calculations of measurement uncertainty are contained in a memo, which is available upon request. However, a summary of NTS's measurement uncertainty is given in Table 1-2.

Table	1-2
-------	-----

Test	Measurement Uncertainty	Reference
Electrostatic	Contact Voltage: 1.9%	Accredited Calibration Data
Discharge	Risetime: 60 ps	Sheet
-	Peak Current: 2.8%	
	30 ns Current: 3.8%	
	60 ns Current: 9%	
	Indicated Voltage: 1.9%	
Radiated RF	V-pole: 1.2 dB	Worksheets located at
Immunity	H-pole: 0.7 dB	
Electrical Fast	Voltage: 0.01 kV	H:\Calibration\Measurement
Transient	Risetime: 0.45 nsec	Uncertainty
	Pulse Width: 1.08 nsec	

1.10 TEST APPARATUS

The instrumentation used in the performance of these tests is periodically calibrated and standardized within manufacturer's rated accuracies and are traceable to the National Institute of Standards and Technology. The calibration procedures and practices are in accordance with ISO 17025:2005. Certification of calibration is on file subject to inspection by authorized personnel.

1.11 SOURCE INSPECTION

NTS QA

1.12 PURCHASE ORDER NUMBER

2019-011

2.0 TEST RESULTS SUMMARY

Table 2-1: Summary of Test Results

Test	Specification	Test Dates	Results
Electrostatic Discharge	EN 61000-4-2	17 July 2019	Complies
Radiated RF Immunity	EN 61000-4-3	16-24 July 2019	Complies
Electrical Fast Transient/Burst	EN 61000-4-4	17 July 2019	Complies

3.0 ELECTROSTATIC DISCHARGE TEST

3.1 <u>REFERENCES</u>

EN 61000-4-2

3.2 SERIAL NUMBERS

Table 3-1: Serial Numbers

041902593

3.3 TEST PROCEDURE

The UUT was subjected to Electrostatic Discharge Testing per IEC 61000-4-2 and in accordance with the referenced documents. Contact discharge testing was performed on selected conductive points of the UUT at a level of ± 8 kV using 1 pulse per second (pps) and 10 discharges per level per polarity. Air discharge was performed at non-conductive points on the UUT at levels of ± 2 kV, ± 4 kV, ± 8 kV, and ± 15 kV. Indirect discharge testing was performed using a vertical coupling plane (VCP) and a horizontal coupling plane (HCP) at a level of ± 8 kV.

3.4 SPECIAL CONFIGURATIONS

N/A

3.5 TEST RESULTS

The UUT maintained essential performance and basic safety and therefore complied with the requirements of this test.

Note: In the event that no discharge occurs when ESD testing is performed on a product, the data sheet will state "no [contact or air] discharge points found".

Electrostatic Discharge Test Data is presented in Appendix A.

4.0 RADIATED RF IMMUNITY TEST

4.1 <u>REFERENCES</u>

EN 61000-4-3

4.2 SERIAL NUMBERS

Table 4-1: Serial Numbers

A17C002919,AK76022990A0,					
PY3JN2000184					
041902577					

4.3 <u>TEST PROCEDURE</u>

Radiated RF immunity testing was performed on the UUT in accordance with the test methods specified in IEC 61000-4-3. The UUT, which was a table-top unit, was placed of a non-conductive table inside the semi-anechoic-lined, ferrite floor chamber. Testing was performed in both horizontal and vertical antenna polarizations over the frequency range from 80 MHz to 1 GHz at 10 V/m. The UUT was rotated on the table so that all four sides were illuminated in the field. The frequency was stepped in 1% increments and a dwell time of three (3) seconds was used at each test frequency. The radiated field was amplitude modulated with a 1 kHz sine wave to a depth of 80%. Performance of the unit was monitored remotely (via Ethernet) with a support PC. Both configurations were tested.

4.4 SPECIAL CONFIGURATIONS

N/A

4.5 <u>TEST RESULTS</u>

The UUT maintained essential performance and basic safety and therefore complied with the requirements of this test.

Radiated RF Immunity Test Data is presented in Appendix B.

5.0 ELECTRICAL FAST TRANSIENT/BURST TEST

5.1 <u>REFERENCES</u>

EN 61000-4-4

5.2 SERIAL NUMBERS

Table 5-1: Serial Numbers

041902593

5.3 TEST PROCEDURE

Electrical fast transient/burst testing was performed on the UUT in accordance with EN 61000-4-4. The UUT's AC power was tested via direct injection at a level of ± 2.0 kV. A 100 kHz repetition rate was used for this testing and a minimum of 1 minute was used for each mode of injection.

5.4 SPECIAL CONFIGURATIONS

N/A

5.5 TEST RESULTS

The UUT maintained essential performance and basic safety and therefore complied with the requirements of this test.

Electrical Fast Transient/burst Test Data is presented in Appendix C.

Test Report No. ITR-PR100763

APPENDIX A: Electrostatic Discharge Test Data

	Manufacture		lear B lient)	allot Group	(manufactu	urer) Pro V&V	Project Number:	PR100763	
Customer l	Representative	: St	ephen	Han			Test Area:	GP1	
	Model	l: C	learCa	st Model D			S/N:	041902593	
Standa	rd Referenced	l: E	AC 20	05 VVSG			Date:	July 17, 201	9
	Temperature	e: 26	б.7°С]	Humidity:	52%	Pressure:	835 mb	
	Input Voltage	e: 12	20Vac/	60Hz	-				
Configu	uration of Unit	t: Pı	rinting	ballots					
	Test Engineer	r: Ca	asey L	ockhart					
PR100763-4-2.d	oc								FR0100
Test Location	Voltage Level (kV)	Pola +	arity -	Number of Pulses	Pulses Per Second	C	omments	Criteria Met	Pass / Fail
					Indirect Dis	charge Points			
VCP	8	x	x	10	1	Front Side		А	Pass
VCP	8	х	x	10	1	Left Side		А	Pass
VCP	8	х	х	10	1	Right Side		А	Pass
VCP	8	х	х	10	1	Back Side		А	Pass
			1	I	I				I
HCP	8	х	х	10	1	Edge of HCP at F	Front of UUT	N/A	N/A
			1	Contact	Discharge I	Points - RED Arrov	vs.		
Figure A2	8	х	x	10	1	Slight flicker on s	screen.	В	Pass
Figure A2	8	х	x	10	1			А	Pass
Figure A2	8	х	x	10	1			А	Pass
Figure A2	8	х	x	10	1			А	Pass
Figure A2	8	х	х	10	1	Slight flicker on screen		В	Pass
			1	Air Di	scharge Poi	nts - BLUE Arrows	3.		
Figure A2	2, 4, 8, 15	х	х	10	1	No discharge points found			
Figure A2	2, 4, 8, 15	х	х	10	1	1 No discharge points found			
Figure A2	2, 4, 8, 15	х	х	10	1	1 No discharge points found			
Figure A2	2, 4, 8, 15	х	х	10	1	1 No discharge points found			
Figure A2	2, 4, 8, 15	х	х	10	1	No discharge poi	nts found.		

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR100763
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast Model D	S/N:	041902593
Standard Referenced:	EAC 2005 VVSG	Date:	July 17, 2019
PR100763-4-2.doc			FR0100

Figure A1. Electrostatic Discharge Test Setup.

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR100763
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast Model D	S/N:	041902593
Standard Referenced:	EAC 2005 VVSG	Date:	July 17, 2019
PR100763-4-2.doc			FR0100
	Figure A2. Electrostatic Discharge T	l'est Setup.	

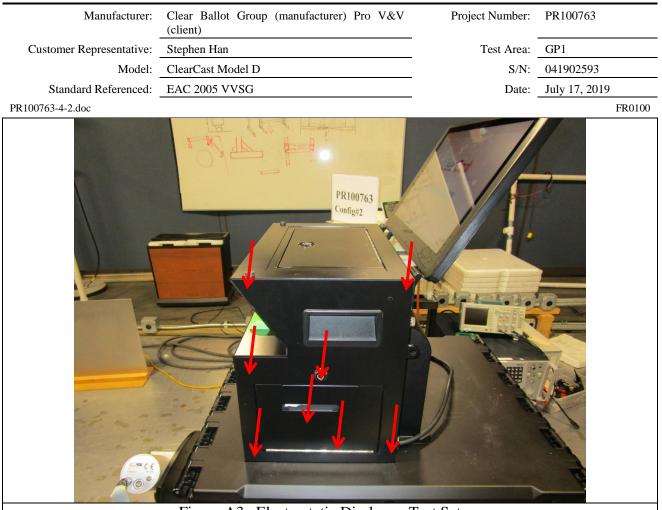


Figure A3. Electrostatic Discharge Test Setup.

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR100763
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast Model D	S/N:	041902593
Standard Referenced:	EAC 2005 VVSG	Date:	July 17, 2019
PR100763-4-2.doc			FR0100
	<image/>	Fest Setur	
	rigure A4. Electrostatic Discharge I	esi setup.	

Figure A4. Electrostatic Discharge Test Setup.

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR100763
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast Model D	S/N:	041902593
Standard Referenced:	EAC 2005 VVSG	Date:	July 17, 2019
PR100763-4-2.doc			FR0100

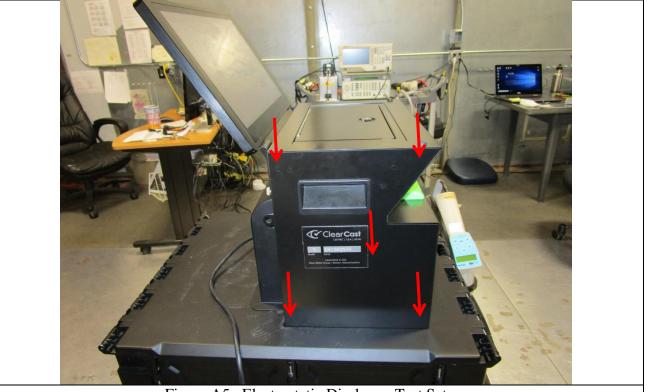


Figure A5. Electrostatic Discharge Test Setup.

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR100763
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast Model D	S/N:	041902593
Standard Referenced:	EAC 2005 VVSG	Date:	July 17, 2019
PR100763-4-2.doc			FR0100
	Figure A6. Electrostatic Discharge T	Fast Satur	
	i iguio 110. Dicentostatie Discharge	rost sotup.	

Figure A6. Electrostatic Discharge Test Setup.

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR100763
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast Model D	S/N:	041902593
Standard Referenced:	EAC 2005 VVSG	Date:	July 17, 2019
PR100763-4-2.doc			FR0100

Test Equipment List

ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1039	Fluke	83-3	69811227	Multimeter/Frequency Meter	02/14/2019	02/14/2020
1281	EMC Partner	ESD3000	284	ESD Test System	01/16/2019	01/16/2020
1296	California Instruments Corporation	5001IX208- 150/300	S59159	5k VA AC Power Source	08/01/2018	08/01/2019
1899	EXTECH	445703	1217	Hygrometer-Thermometer	06/10/2019	06/10/2020

Test Report No. ITR-PR100763

APPENDIX B: Radiated RF Immunity Test Data

22

Configuration 1:

Manufacturer:	Clear Ballot Group (r (client)	nanufacturer) Pro V&V	Project Number:	PR100763
Customer Representative:	Stephen Han		Test Area:	10m2
Model:	ELO E(AIO Desktop PY3JN2000184 (Cyberl		S/N:	A17C002919,AK760 22990A0, PY3JN2000184
Standard Referenced:	EAC 2005 VVSG		Date:	July 16, 2019
Temperature:	24°C Hu	midity: <u>68%</u>	Pressure:	838mb
Input Voltage:	120Vac/60Hz			
Configuration of Unit:	Printing ballots			
Test Engineer:	Kevin Johnson			
PR100763-4-3.doc				FR0100

Frequency		Mo	dulation		Step	Field	Polarity	Dwell	Comments	Criteria	Pass /
(MHz)	Туре	%	Freq	Form	Size	(V/m)	(V or H)	(sec)		Met	Fail
					(%)						
80 - 1000	AM	80	1kHz	Sine	1	10	V	3	Front Side	А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	Н	3		А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	V	3	Right Side	А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	Н	3		А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	V	3	Back Side	А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	Н	3		А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	V	3	Left Side	А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	Н	3		А	Pass

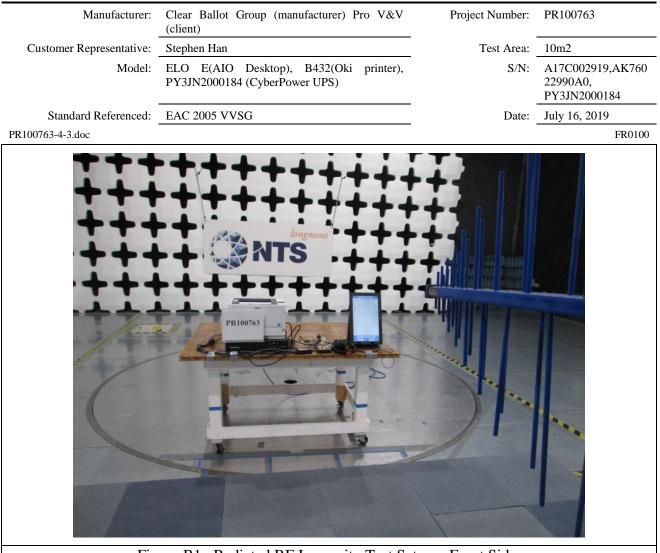


Figure B1. Radiated RF Immunity Test Setup - Front Side.



Figure B2. Radiated RF Immunity Test Setup - Right Side.

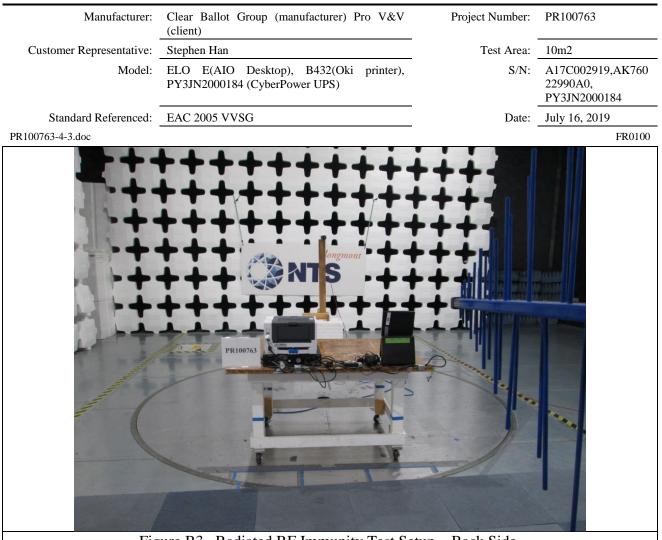


Figure B3. Radiated RF Immunity Test Setup - Back Side.

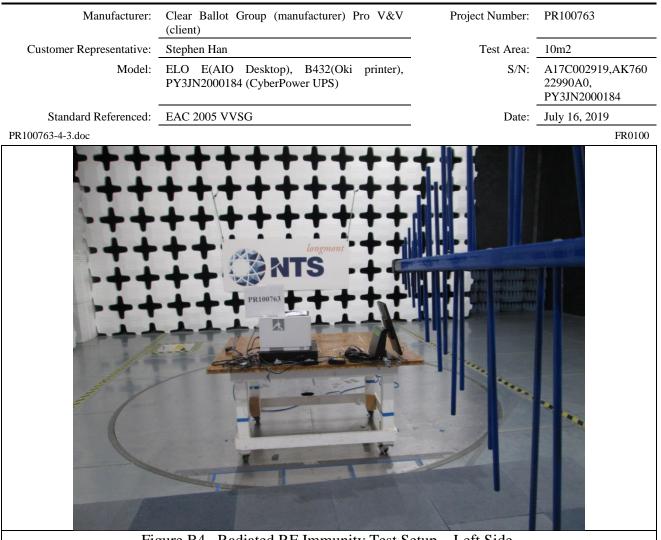


Figure B4. Radiated RF Immunity Test Setup - Left Side.

FR0100

Radiated RF Immunity per IEC / EN 61000-4-3

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR100763
Customer Representative:	Stephen Han	Test Area:	10m2
Model:	ELO E(AIO Desktop), B432(Oki printer), PY3JN2000184 (CyberPower UPS)	S/N:	A17C002919,AK760 22990A0, PY3JN2000184
Standard Referenced:	EAC 2005 VVSG	Date:	July 16, 2019

PR100763-4-3.doc

Test Equipment List

ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1005	EMCO	3140	1012	Biconilog Antenna	NA	NA
1054	IFR	2023B	202302/817	Signal Generator (9 kHz - 2.05 GHz)	02/07/2019	02/07/2020
1396	CIR Enterprises	10m Chamber #2	002	10m Chamber with 4m turntable	03/29/2018	03/29/2020
1575	Rigol Technologies, Inc	DSA815-TG	DSA8A162150 400	9 kHz to 1.5 GHz Spectrum Analyzer w/ tracking gen	11/09/2018	11/09/2019
1455	Giga-tronics	GT-8888A	8888A03337	10 MHz to 8 GHz, +20 dBm, 25 Vdc Power Meter	04/10/2019	04/10/2020
1309	Amplifier Research	150W100BM3	303844	Amplifier 150W, 80-1000MHz	NA	NA
1308	Amplifier Research	500WA100AM 3	303874	Amplifier 500W, 10kHz-100MHz	NA	NA
1181	EMCI	RFS	V2.5.8	Initial Release 02 July 2004	NA	NA
1492	Fluke	87/5 Multimeter	23350032	True RMS Multimeter	05/09/2019	05/09/2020

Configuration 2:

	Manufacturer:	Clear Ballot G (client)	roup (n	nanufactur	rer) Pro V&	zV	Project Number:	PR100763	
Customer I	Representative:	Stephen Han					Test Area:	10m2	
	Model:	ClearCast Mode	l D				S/N:	041902577	
Standa	rd Referenced:	EAC 2005 VVS	EAC 2005 VVSG					Date: July 24, 2019	
	Temperature:	27°C	Hun	nidity: 4	40%		Pressure:	842 mb	
	Input Voltage:	120Vac/60Hz							
Configu	uration of Unit:	Printing ballots							
	Test Engineer:	Mike Tidquist							
PR100763-4-3.d	oc								FR0100
Engrander	Mode	lation	Ston	Field	Dolonity	Dunell	Commonto	Critoria	Deca /

Frequency		Мо	dulation	_	Step	Field	Polarity	Dwell	Comments	Criteria	Pass /
(MHz)	Туре	%	Freq	Form	Size (%)	(V/m)	(V or H)	(sec)		Met	Fail
80 - 1000	AM	80	1kHz	Sine	1	10	V	3	Front Side	А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	Н	3		А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	V	3	Right Side	А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	Н	3		А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	V	3	Back Side	А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	Н	3		А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	V	3	Left Side	А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	Н	3		А	Pass

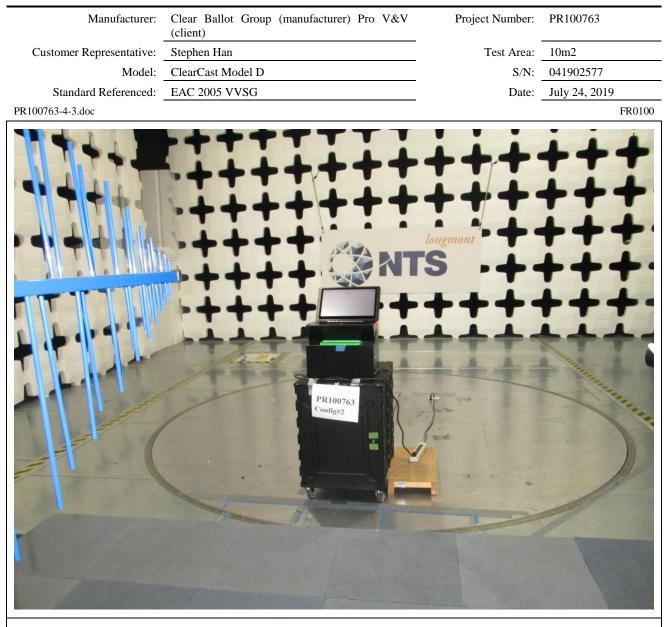


Figure B1. Radiated RF Immunity Test Setup – Front Side.

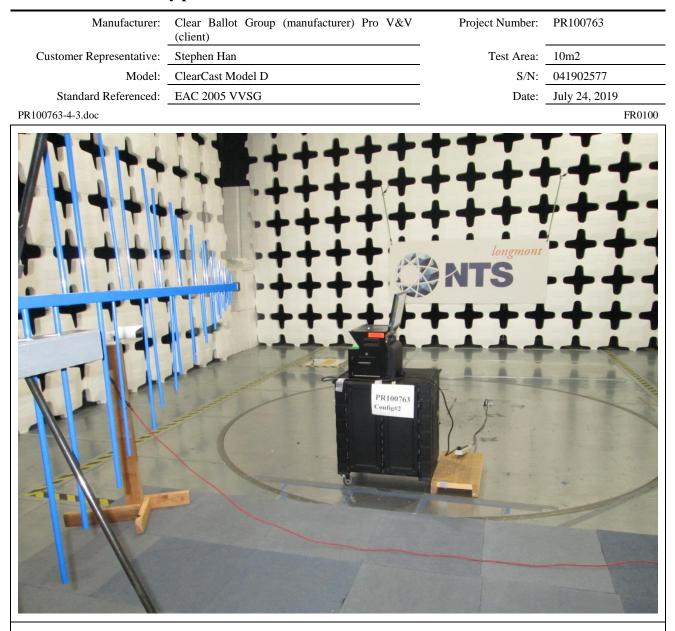


Figure B2. Radiated RF Immunity Test Setup – Right Side.

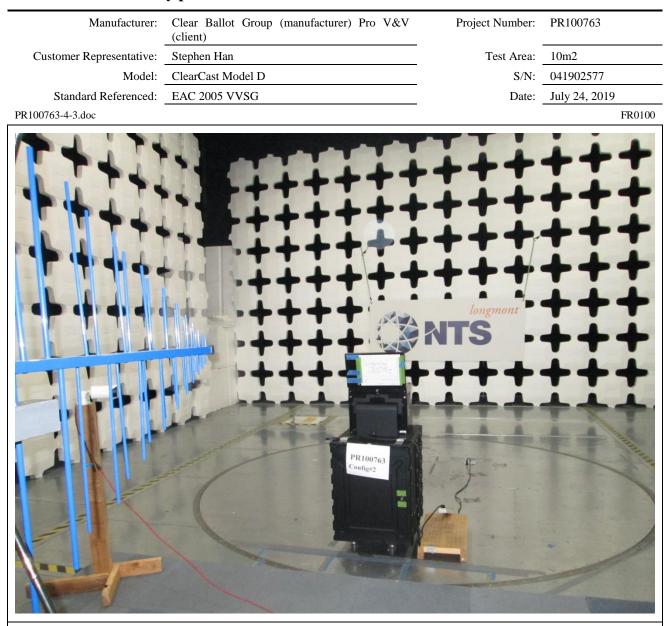


Figure B3. Radiated RF Immunity Test Setup – Back Side.

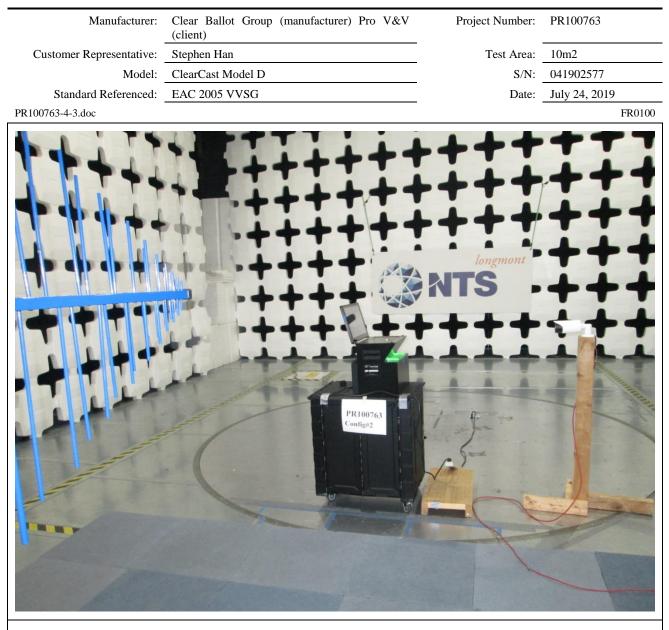


Figure B4. Radiated RF Immunity Test Setup – Left Side.

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR100763
Customer Representative:	Stephen Han	Test Area:	10m2
Model:	ClearCast Model D	S/N:	041902577
Standard Referenced:	EAC 2005 VVSG	Date:	July 24, 2019
R100763-4-3.doc			FR0100

PR100763-4-3.doc

Test Equipment List

ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1005	EMCO	3140	1012	Biconilog Antenna	NA	NA
1054	IFR	2023B	202302/817	Signal Generator (9 kHz - 2.05 GHz)	02/07/2019	02/07/2020
1396	CIR Enterprises	10m Chamber #2	002	10m Chamber with 4m turntable	03/29/2018	03/29/2020
1575	Rigol Technologies, Inc	DSA815-TG	DSA8A162150 400	9 kHz to 1.5 GHz Spectrum Analyzer w/ tracking gen	11/09/2018	11/09/2019
1455	Giga-tronics	GT-8888A	8888A03337	10 MHz to 8 GHz, +20 dBm, 25 Vdc Power Meter	04/10/2019	04/10/2020
1309	Amplifier Research	150W100BM3	303844	Amplifier 150W, 80-1000MHz	NA	NA
1308	Amplifier Research	500WA100AM 3	303874	Amplifier 500W, 10kHz-100MHz	NA	NA
1181	EMCI	RFS	V2.5.8	Initial Release 02 July 2004	NA	NA
1492	Fluke	87/5 Multimeter	23350032	True RMS Multimeter	05/09/2019	05/09/2020

Test Report No. ITR-PR100763

APPENDIX C: Electrical Fast Transient/Burst Test Data

Electrical Fast Transient/Burst per IEC / EN 61000-4-4

Manufacturer:				Clear Ballot Group (manufacturer) Pro V&V (client)							Project Number:	PR100763		
Customer Representative:			ative:	Stephen Han							Test Area:	a: GP1		
Model:			Iodel:	ClearCast Model D							S/N:	041902593		
Standard Referenced:			enced:	EAC 2005 VVSG							Date:	July 17, 2019		
Temperature:				24.5°C Humidity: 60%							Pressure:	835 mb		
Input Voltage:				120Vac/60Hz										
Configuration of Unit:				Printing ballots										
	Te	st Eng	ineer:	Casey Lockhart										
PR100763-4	-4.doc											F	R0100	
Voltage	Pola	rity	Time	Injection	L1	L2	L3	N	PE	Rep	Comments	Criteria	Pass /	
(kV)	+	-	(sec)	Туре						Freq.		Met	Fail	
2.0	x		60	CDN	х									
2.0										100kHz	AC	А	Pass	
		Х	60	CDN	х					100kHz 100kHz	AC	A A	Pass Pass	
2.0	x	X	60 60	CDN CDN	x	X					AC			
2.0 2.0	X	X X			X	X X				100kHz	AC	A	Pass	
	x		60	CDN	X				X	100kHz 100kHz	AC	A	Pass Pass	
2.0			60 60	CDN CDN	X				x	100kHz 100kHz 100kHz	AC	A A A A	Pass Pass Pass	
2.0 2.0		X	60 60 60	CDN CDN CDN	X					100kHz 100kHz 100kHz 100kHz	AC	A A A A A	Pass Pass Pass Pass	

Electrical Fast Transient/Burst per IEC / EN 61000-4-4

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR100763
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast Model D	S/N:	041902593
Standard Referenced:	EAC 2005 VVSG	Date:	July 17, 2019
R100763-4-4.doc			FR010

Figure C1. Electrical Fast Transient Test Setup.

Electrical Fast Transient/Burst per IEC / EN 61000-4-4

Manufacturer:	Clear Ballot Group (man (client)	ufacturer) Pro	V&V	Project Number:	PR100763
Customer Representative:	Stephen Han			Test Area:	GP1
Model:	ClearCast Model D			S/N:	041902593
Standard Referenced:	EAC 2005 VVSG			Date:	July 17, 2019
PR100763-4-4.doc					FR0100
Fire	ura C2. Elactrical East	t Transiant 7	Test Satur	ACMains	
Fig	re C2. Electrical Fas	t Transient T	l'est Setup	– AC Mains.	

Figure C2. Electrical Fast Transient Test Setup – AC Mains.

Electrical Fast Transient/Burst per IEC / EN 61000-4-4

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR100763
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast Model D	S/N:	041902593
Standard Referenced:	EAC 2005 VVSG	Date:	July 17, 2019
PR100763-4-4.doc			FR0100

т

			= 0.50 = qup			
ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1039	Fluke	83-3	69811227	Multimeter/Frequency Meter	02/14/2019	02/14/2020
1184	KeyTek	CEWare	4.0	KeyTek EMCPro Control Software for EFT, Surge, H-F	NA	NA
1284	ThermoFischer Scientific	EMC Pro Plus - USA	0705276	EFT, Surge, H-field & PQF Immunity Test Generator	07/05/2018	08/05/2019
1296	California Instruments Corporation	5001IX208- 150/300	S59159	5k VA AC Power Source	08/01/2018	08/01/2019
1371	Tektronix	TDS2002B	C103483	Oscilloscope, 60 MHz, 2-channel	02/02/2019	02/02/2020
1899	EXTECH	445703	1217	Hygrometer-Thermometer	06/10/2019	06/10/2020

Test Equipment List

Test Report No. ITR-PR100763

APPENDIX D: Test Log

40

EMI\ENV Test Log

Manafaataan		Designed Manual and	DD100762
Manufacturer:	Pro V&V	Project Number:	PR100763
Model:	Config#1(Clear Vote 2.0)	S/N:	A17C002919
	E (ELO)		AK76022990A0
	B432 (Oki)		PY3JN2000184
	PR1500RT2U (CyberPower)		Config#2:041902577
	Config#2(ClearCast Model D)		
Customer Representative:	Michael Walker		
Standard Referenced:	FCC		

FR0105

10m Emissions

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials
RE	6001	July 15, 2019	Initial Product Set-up & Configuration		1.0	Complete	KJ
		1230-1330	Engineering / Trouble-Shoot				
			Test#1: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter distance				
			AMBIENT SCAN				
RE	1342	1330-1430	Test#2: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter distance		2.0	Fail	KJ
			120Vac/60Hz				
			ELO E-Series: A17C002919				
			B432dn: AK76022990A0				
			Cyberpower: PY3JN2000184				
			Config#1				
			NOTE: Client says unpopulated ports on the UPS are diagnostic only.				
			UUT failed at 666.676MHz by 3.31dB				
RE		1430-1630	Test#3: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter distance		2.0	Pass	KJ
			120Vac/60Hz				
			ELO E-Series: A17C002919				
			B432dn: AK8901640960				
			Cyberpower: PY3JN2000184				
			Config#1				
			NOTE: Client says unpopulated ports on the UPS are diagnostic only.				
			Client changed out the printer to the backup printer				
			B432dn: AK8901640960				
CE	2341	July 16, 2019	Test#4: 150kHz – 30MHz		2.0	Pass	KJ
		0800-1000	Config#1				
			120Vac/60Hz				

10m Emissions

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials
4-3	4398	1000	Radiated RF Immunity (10m 2)				KJ
			(4.1.2.10) (Config. #1)				
			10V/m, 80 - 1000 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell				
			120 VAC / 60 Hz				
			Printing and script stopped. Field was not on.				
			Printing and script stopped at 167.7689MHz. Right side, H-pole. Printer power off, PC re-booted				
			Printing and script stopped at 101MHz. Rights side, H- pole. Printer power off, PC re-booted				
			PC has the following error message "Warning- logs are not valid"				
			Printing and script stopped at 564MHz. Rights side, H- pole. Printer power off, PC re-booted				
			Battery in the UPS is at 18%. Client believes that the battery is too low to hold the unit up. When the unit prints it does switch to battery power.				
			Client will try to put a new battery in the UPS.				
			Testing resumed after putting a new battery in the UPS.				
			Unit had a paper jam at 710MHz. back side, V-pole				
			Finished everything tested but right side.				
RE	1342	July 24, 2019 0800-1000	Test #5: Radiated Emissions: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter distance		2.0	Pass	MT
			120Vac/60Hz				
CE	2341	1000-1100	Test #6: Conducted Emissions, 150 kHz - 30 MHz		1.0	Pass	MT
			120 VAC / 60 Hz				
		1100-1200	Setup For RI		1.0	Complete	MT
		1200-1230	Lunch				MT
			Running Radiated Immunity in 10M #2 Chamber				
4-3	4398	1230-1630	Radiated RF Immunity (10m 2)		4.0		MT
			(Config. #2)				
			10V/m, 80 - 1000 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell				
			120 VAC / 60 Hz				
			Front and Right side both polarities complete. Back Side Vertical polarity complete. Still need Back Horizontal and left side both Polarities.				
4-3		July 25, 2019	Continue:		4.0	Pass	MT
		0800-1200	Radiated RF Immunity (10m 2)				
			(Config. #2)				
			10V/m, 80 - 1000 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell				
			120 VAC / 60 Hz				

Regular hours: 19.0

42

10m Emissions

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials
			Overtime/Prem hou	rs:			
			Total hou	irs:	19.0		

Ground Planes / CALC

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials
4-4	4411	July 17, 2019 0800 - 0930	Equipment setup		1.5		CL
		0930 - 1030	Waiting on correct paper to be brought over.		1.0		CL
		1030 - 1100	Electrical Fast Transient / Burst (4.1.2.6) (Config. #2) Mains: +/- 2kV, I/O: +/- 1kV 120 VAC / 60 Hz		.5	Pass	CL
4-2	4254	1100 - 1330	Electrostatic Discharge (4.1.2.8) (Config. #1) +/- 8kV Contact, +/-2, 4, 8, 15kV Air 120 VAC / 60 Hz		2.5	Pass	CL

Project # PR1007 B90622	63	Order #	: 2019052202A	PO#: Amount:	
Company:	Pro V&V 700 Boulevard South Suite 102 Huntsville, AL 35802 Phone: 256-713-11111 Fax:	Contact:	Michael Walker Email: michael.walker@provandv.com	Model#: Serial #:	
Test Notes:	Voting Machine Testing				

Formal test reports

		Quoted Work				
Date	Test Code	Description	Standard	Result	Cost	Billed
July 15, 2019	1342	Radiated Emissions, 30 MHz - 1 GHz (4.1.2.9) (Config. #1) 30 MHz - 1 GHz 120 VAC / 60 Hz	FCC Part 15, Class B	Pass		
July 24, 2019	1342	Radiated Emissions, 30 MHz - 1 GHz (4.1.2.9) (Config. #2) 30 MHz - 1 GHz 120 VAC / 60 Hz	FCC Part 15, Class B	Pass		
July 24, 2019	2341	Conducted Emissions, 150 kHz - 30 MHz (4.1.2.9) (Config. #2) 120 VAC / 60 Hz	FCC Part 15, Class B	Pass		
July 16, 2019	2341	Conducted Emissions, 150 kHz - 30 MHz (4.1.2.9) (Config. #1) 120 VAC / 60 Hz	FCC Part 15, Class B	Pass		
	4254	Electrostatic Discharge (4.1.2.8) (Config. #1) +/- 8kV Contact, +/-2, 4, 8, 15kV Air 120 VAC / 60 Hz	EN61000-4-2			
July 17, 2019	4254	Electrostatic Discharge (4.1.2.8) (Config. #2) +/- 8kV Contact, +/-2, 4, 8, 15kV Air 120 VAC / 60 Hz	EN61000-4-2	Pass		
July 24, 2019	4398	Radiated RF Immunity (10m 2) (4.1.2.10) (Config. #2) 10V/m, 80 - 1000 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell 120 VAC / 60 Hz	EN61000-4-3	Pass		
	4398	Radiated RF Immunity (10m 2) (4.1.2.10) (Config. #1) 10V/m, 80 - 1000 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell 120 VAC / 60 Hz	EN61000-4-3			

		Quoted Work				
Date	Test Code	Description	Standard	Result	Cost	Billed
	4411	Electrical Fast Transient / Burst (4.1.2.6) (Config. #1) Mains: +/- 2kV, I/O: +/- 1kV	EN61000-4-4			
July 17, 2019	4411	120 VAC / 60 Hz Electrical Fast Transient / Burst (4.1.2.6) (Config. #2) Mains: +/- 2kV, I/O: +/- 1kV 120 VAC / 60 Hz	EN61000-4-4	Pass		
	4596	Surge Immunity (4.1.2.7) (Config. #1) Mains: +/- 2kV CM, +/- 2kV DM, (0, 90, 180, 270) 120 VAC / 60 Hz	EN61000-4-5			
	4596	Surge Immunity (4.1.2.7) (Config. #2) Mains: +/- 2kV CM, +/- 2kV DM, (0, 90, 180, 270) 120 VAC / 60 Hz	EN61000-4-5			
	4622	Conducted RF Immunity (4.1.2.11) (Config. #1) 10Vrms, 0.15 - 80 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell 120 VAC / 60 Hz	EN61000-4-6			
	4622	Conducted RF Immunity (4.1.2.11) (Config. #2) 10Vrms, 0.15 - 80 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell 120 VAC / 60 Hz	EN61000-4-6			
	4831	Power Frequency H-Field Immunity (4.1.2.12) (Config. #2) 30A/m, 50 / 60 Hz, 3 axes 120 VAC / 60 Hz	EN61000-4-8			
	4831	Power Frequency H-Field Immunity (4.1.2.12) (Config. #1) 30A/m, 50 / 60 Hz, 3 axes 120 VAC / 60 Hz	EN61000-4-8			
	4194	Voltage Dips and Interruptions (Surge of +/- 15%) (4.1.2.5) (Config. #1) Surge of +/- 15% line variation of nominal line voltage 120 VAC / 60 Hz	EN61000-4-11			
	4194	Voltage Dips and Interruptions (Surge of +/- 15%) (4.1.2.5) (Config. #2) Surge of +/- 15% line variation of nominal line voltage 120 VAC / 60 Hz	EN61000-4-11			
	4193	Voltage Dips and Interruptions (4.1.2.5) (Config. #2) 70% nom, 0.6 cycles / 40% nom, 6 cycles & 1 sec. / 0% nom, 300 cycles 120 VAC / 60 Hz	EN61000-4-11			

		Quoted Work				
Date	Test Code	Description	Standard	Result	Cost	Billed
	4193	Voltage Dips and Interruptions (4.1.2.5) (Config. #1) 70% nom, 0.6 cycles / 40% nom, 6 cycles & 1 sec. / 0% nom, 300 cycles 120 VAC / 60 Hz	EN61000-4-11			
	4196	Voltage Dips and Interruptions (Inc./Red. of Nom. Voltage)(4.1.2.5)(Conf # Electric power increases of 7.5% and reductions of 12.5% of nominal specified power. (See Protocol) 120 VAC / 60 Hz	EN61000-4-11			
	4196	Voltage Dips and Interruptions (Inc./Red. of Nom. Voltage)(4.1.2.5)(Conf # Electric power increases of 7.5% and reductions of 12.5% of nominal specified power. (See Protocol) 120 VAC / 60 Hz	EN61000-4-11			
July 15, 2019	6001	Initial Product Set-up & Configuration Engineering / Trouble-Shoot 		Complete		
	9040	Emissions Test Report - Soft Copy One Report, Two Configurations				
	9010	Immunity Test Report - Soft Copy One Report, Two Configurations				

	Unquoted Work					
Date	Test Code	Description	Cost	Billed		

Modifications Required For Compliance				
Test	Description of Modification	Client Initials		

Test Report No. ITR-PR100763

APPENDIX E: Product Data Sheet

Configuration 1:

1.0 Client Information

Client Information	
Manufacturer Name	Clear Ballot Group (manufacturer) Pro V&V (client)
Address	700 Boulevard South Suite 102
City	Huntsville
State	AL
Zip Code	35802
Client Representative	Stephen Han
Title	Project Engineer
Phone	256-713-1111
Fax	256-713-1112
Email	stephen.han@provandv.com

2.0 Product Information - General

Product Information							
Product Name (a	s it should appear on test report)	ClearAccess					
Model Number (of UUT to be tested)	ClearAccess					
Functional descri	iption of product (what is it, what does it	ballot n	narking	device			
do, etc.)							
List all modes of		Regular	and au	dio			
	perated simultaneously? If so, explain.	Yes					
	ill be used for testing?	Both					
	Medical, Scientific, Industrial, etc.)	IT					
	intentional radiator	no					
Product Dimensi	ons	Multipl	e				
Product Weight		Multipl	e				
Will fork lift be 1		No					
Applicable Stand		EAC 2005 VVSG Volumes I and II					
	ronment(s) where product will be used	Used for voting during elections					
	mercial, industrial, etc.)						
	nsist of multiple components? (If yes,	Yes. printers, varies laptops, UPS					
	ach system component)						
	econds? (If yes, how long?)	Yes.					
	y generated frequency						
Product Set-up T		15 minutes					
	he event of an unintentional power down						
Identify ALL I/C	Connections on the unit(s) under test, as w	vell as M	AXIM	UM asso	ociated ca	ble lengths l	below
			I/O 7	Гуре	Length	Patient	
Model No.	Description		UUT-	UUT	(m)	Connect?	QTY
			UUT	- SE		(See Note)	
	USB						
	power						
Note: "Patient C	Connect" column applies only to medical d	evices.					

3.0 Power

Power Requirements	
Does/can product connect to AC mains?	Yes.
(If so, can the UUT function when connected to AC?)	
Input Voltage Rating as it appears on unit, power supply,	n/a
or power brick	
Input Current (specify @ 230 Vac/50 Hz)	
Single or Multi-Phase	single
(If multi-phase, specify delta or wye)	
Is input power connector two-prong (Hot & Neutral) or	3 prong
3-prong (H, N, Ground)	
Does UUT have more than 1 power cord? (If yes,	No
explain.)	

4.0 Unit Under Test (UUT) – Detailed Information


UUT Hardware							
Condition		New					
Configuration Printing Ballots During Test Printing Ballots							
Input Power Normal AC power							
UUT Compo	onents						
Name		el No.		al No.	Description		
ELO]	E	A17C	002919	AIO Desktop		
Oki		432		22990A0	Printer		
CyberPower	PR150	0RT2U	PY3JN	2000184	UPS		
					-		
I/O Cabling							
See Section 2	.0 for de	tails					
UUT Softwa							
Name	,	Version/F	Revision	Functionality			
ClearAccess		2.0.0	Oh	Voting systems software			
				<u> </u>			
UUT Operat							
List all frequencies generated/used by the			ed by the	n/a			
product.							
How will product be exercised during test?				Printing ballots			
How will product be monitored during test? What are the product's critical parameters?				Visually			
				Unit keeps printing			
Specify tolera	nce of all	l critical p	arameters.	Unit keeps p	rinting		

5.0 Support Equipment (SE) – Detailed Information

Support Equip	oment (SE)						
Name	Model No.	Seria	Serial No. Description			otion	
MonoPrice		CBG-l	HP-02		Headph	ones	
Storm	8button	1702	0511		AT	[
Zebra	DS457	1828500	0501808		Bar code s	scanner	
SE I/O Cabling	9		-				
Model No.		Description			Shielded?	Length	Quantity
Generic		USB			Ν	>3M	1
Generic		3.5mm Headphone jack			Ν	>3M	1
SE Software/F	irmware			-			-
Name	Version/R	levision	Functionality				
			n/a				

6.0 Block Diagram

Important note: The product data sheet is a critical piece of documentation which is used as the basis for any test reports that NTS will generate; it must be completed *prior* to testing. It should be reviewed carefully by the client. If incorrect information is provided resulting in revisions to test repor

Configuration 2:

1.0 Client Information

Client Information	
Manufacturer Name	Clear Ballot Group (manufacturer) Pro V&V (client)
Address	700 Boulevard South Suite 102
City	Huntsville
State	AL
Zip Code	35802
Client Representative	Stephen Han
Title	Project Engineer
Phone	256-713-1111
Fax	256-713-1112
Email	stephen.han@provandv.com

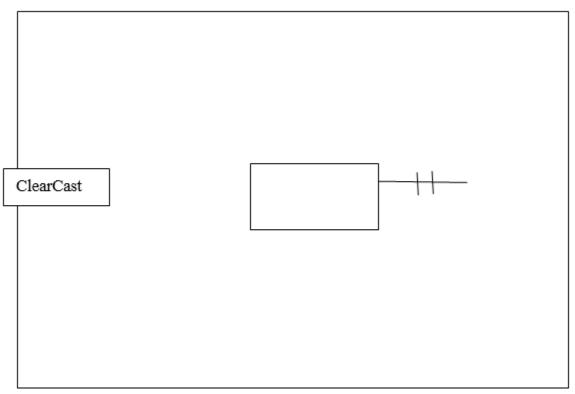
2.0 Product Information - General

Product Inform	nation						
Product Name (a	s it should appear on test report)	ClearCast					
Model Number (of UUT to be tested)	ClearCast					
Functional descri	iption of product (what is it, what does it	Precinc	t Tabula	ıtor			
do, etc.)							
List all modes of		Regular	•				
	perated simultaneously? If so, explain.	Yes					
	ill be used for testing?	Both					
	Medical, Scientific, Industrial, etc.)	IT					
Is the product an	intentional radiator	no					
Product Dimensi	ons						
Product Weight							
Will fork lift be 1		No					
Applicable Stand	lards, if known	EAC 2005 VVSG Volumes I and II					
	ronment(s) where product will be used	Used for voting during elections					
	mercial, industrial, etc.)						
	nsist of multiple components? (If yes,	No					
	ach system component)						
	econds? (If yes, how long?)	Yes. 5 sec					
0	y generated frequency						
Product Set-up T		15 minutes					
Â	he event of an unintentional power down	0 minutes - internal backup battery					
Identify ALL I/C	O connections on the unit(s) under test, as w	vell as M	AXIM	U M asso	ociated ca	ble lengths l	below
			I/O 7	Гуре	Length	Patient	
Model No.	Description		UUT-	UUT	(m)	Connect?	QTY
			UUT	- SE		(See Note)	
	power						
Note: "Patient (Connect" column applies only to medical d	evices.		I	1	l	I
1.0.0. 1 000000	estimit appres only to medical a						

3.0 Power

Power Requirements	
Does/can product connect to AC mains?	Yes.
(If so, can the UUT function when connected to AC?)	
Input Voltage Rating as it appears on unit, power supply,	n/a
or power brick	
Input Current (specify @ 230 Vac/50 Hz)	Normal
Single or Multi-Phase	single
(If multi-phase, specify delta or wye)	
Is input power connector two-prong (Hot & Neutral) or	3 prong
3-prong (H, N, Ground)	
Does UUT have more than 1 power cord? (If yes,	No
explain.)	

4.0 Unit Under Test (UUT) – Detailed Information


UUT Hardwa	UUT Hardware							
Condition		New						
Configuratio During Test		Scannin	g ballots					
Input Power	wer Normal AC power							
UUT Compo	onents							
Name	Mod	el No.	Seria	al No.	Description			
ClearCast]	D	0419	02593	Precinct Tabulator			
	<u> </u>	_	<u> </u>					
I/O Cabling								
See Section 2								
UUT Softwa	re/Firm	ware						
Name		Version/I		Functionality				
ClearCast		2.0	.0		Voting systems software			
UUT Operat								
List all frequencies generated/used by the			ed by the	n/a				
product.								
How will product be exercised during test? How will product be monitored during test?				Scanning Ballots				
What are the product's critical parameters?				Visually Unit keeps scepping				
Specify tolera				Unit keeps scanning Unit keeps scanning				
specify tolera	ince of al		Jarameters.	Unit keeps so	anning			

5.0 Support Equipment (SE) – Detailed Information

Support Equip	oment (SE)				
Name	Model No.	Serial No.	Description		
n/a					
	-				
SE I/O Cabling					
Model No.		Description	Shielded?	Length	Quantity
n/a					
					<u> </u>
SE Software/F	irmware				
Name	Version/Re	evision Functionality			
n/a					

6.0 Block Diagram

Important note: The product data sheet is a critical piece of documentation which is used as the basis for any test reports that NTS will generate; it must be completed *prior* to testing. It should be reviewed carefully by the client. If incorrect information is provided resulting in revisions to test reports

Test Report No. ITR-PR100763

APPENDIX F: Laboratory Accreditations

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

NATIONAL TECHNICAL SYSTEMS (NTS) - LONGMONT 1736 Vista View Drive Longmont, CO 80504-5242 Mr. Eric Loucks Phone: 870 574 0031

ELECTRICAL

Valid To: February 29, 2020

Certificate Number: 0214.43

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following <u>Electromagnetic Compatibility/Interference (EMC/EMI)</u>, <u>Lightning</u>, <u>Transient</u>, <u>Surge</u>, and <u>Product Safety tests</u>:

Test Technology:	Test Method(s) ^{1,2} :		
Emissions			
Radiated and Conducted	CFR 47 FCC, Parts 15B (using ANSI C63.4:2014), and 18 (using MP-5:1986); ANSI C63.4:2009; CISPR 32, Ed. 1 (2012-01); EN 55032:2012/AC:2013; AS/NZS CISPR 22 (2002); AS/NZS 3548 (1997); AS/NZS CISPR 14-1 (2003); IEC/CISPR 14-1, Ed. 4 (2003); IEC 61000-3-12, Ed. 2.0 (2011); EN 61000-3-12 (2011); IEC 61000-6-1, Ed. 2 (2005-03); IEC 61000-6-2, Ed. 2.0 (2005-01); IEC 61000-6-3 (1996); EN 61000-6-3 (2001) + A1 (2004); EN 61000-6-4 (2007); KN 32:2015 (Annex 11); KN 22; KN 11		
Harmonics	IEC 61000-3-2, Ed. 2.2 (2004-11); IEC 61000-3-2, Ed. 3.0 (2005) + A1 (2008) + A2 (2009); IEC 61000-3-2, Ed. 4.0 (2014-05)		
Flicker	IEC 61000-3-3, Ed. 1.1 (2002-03); EN 61000-3-3 + A1 (2001); IEC 61000-3-3, Ed. 1.1 (2003) + A2 (2005); IEC 61000-3-3, Ed. 3.0 (2013-05)		
Immunity			
Electrostatic Discharge (ESD)	IEC 61000-4-2 (2001); EN 61000-4-2 (2001) + A2 (2001); EN 61000-4-2 + A1 (1998) + A2 (2001); IEC 61000-4-2, Ed. 2.0 (2008-12); EN 61000-4-2 (2009-05); KN 61000-4-2; KN 61000-4-2 (2008-5); KN 61000-4-2 (Annex 1-1)		
Radiated	IEC/EN 61000-4-3, Ed. 2.1 (2002) + A1 (2002); EN 61000-4-3; IEC 61000-4-3 (1995) + A1 (1998) + A2 (2000); EN 61000-4-3 (2002) + A1 (2002); IEC 61000-4-3, Ed. 3.0 (2006-02) + A1 (2007) + A2 (2010); EN 61000-4-3 (2006) + A1 (2008) + A2 (2010); KN 61000-4-3; KN 61000-4-3 (2008-5); KN 61000-4-3 (Annex 1-2)		
(A2LA Cert. No. 0214.43) 10/08/2018	Page 1 of 4		

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8515 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

Test Technology:	Test Method(s) ^{1,2} :		
Immunity (cont'd) Electrical Fast Transient/Burst	IEC 61000-4-4, Ed. 2.0 (2004-07); EN 61000-4-4 (2004); EN 61000-4-4:2012; IEC 61000-4-4 (2012-04); KN 61000-4-4; KN 61000-4-4 (2008-5); KN 61000-4-4 (Annex 1-3)		
Surge	IEC 61000-4-5, Ed. 2.0 (2005-11); EN 61000-4-5; IEC 61000-4-5, Ed. 3.0 (May 2014); BS EN 61000-4-5 (2006); EN 61000-4-5: 2014; KN 61000-4-5; KN 61000-4-5 (2008-5); KN 61000-4-5 (Annex 1-4); IEEE C62.41.1 (2002); IEEE C62.41.2 (2002); IEEE C62.45 (2002)		
Conducted	IEC 61000-4-6, Ed. 2.1 (2004); EN 61000-4-6; EN 61000-4-6 (1996) + A1 (2001); IEC 61000-4-6, Ed. 2.2 (2006-05); IEC 61000-4-6, Ed. 3.0 (2008); IEC 61000-4-6, Ed. 4.0 (2013); EN 61000-4-6 (2009); EN 61000-4-6 (2014); KN 61000-4-6; KN 61000-4-6 (2008-5); KN 61000-4-6 (Annex 1-5)		
Power Frequency Magnetic Field	IEC 61000-4-8 (2001) + A1 (2000); EN 61000-4-8 (2001) + A1 (2000); EN 61000-4-8 (1993) + A1 (2001); IEC 61000-4-8 (2009); EN 61000-4-8:2010; KN 61000-4-8; KN 61000-4-8 (2008-5); KN 61000-4-8 (Annex 1-6)		
Voltage Dips, Short Interruptions, and Voltage Variations	IEC 61000-4-11, Ed. 2 (2004-03); EN 61000-4-11; EN 61000-4-11 (1994) + A1 (2001); EN 61000-4-11 (2004); KN 61000-4-11; KN 61000-4-11 (2008-5); KN 61000-4-11 (Annex 1-7)		
Product Safety Medical Electrical Equipment	IEC 60601-1-2, Ed. 3.0 (2007); KN 60601-1-2 (2008-5); IEC 60601-1-2, Ed. 4, (2014-02); EN 60601-1-2 (2007); EN 60601-1-2 (2015)		
Generic/Product Family Standards and Industry Standards Generic Standards	EN 61326-1: 2013; KN 35: 2015		
Information Technology Equipment	IEC/CISPR 22 (1997); EN 55022 (1998) + A1 (2000); IEC/CISPR 22 (1993); EN 55022 (1994); IEC/CISPR 22 (1993); EN 55022 (1994) + A1 (1995) + A2 (1997); CNS 13438 (1997); IEC/CISPR 22, Ed. 4 (2003-04); EN 55022 (1998); IEC/CISPR 22, Ed. 5 (2005); EN 55022 (1998); IEC/CISPR 22, Ed. 5 (2005) + A1 (2005); EN 55022 (1998) + A1 (2000) + A2 (2003);		

(A2LA Cert. No. 0214.43) 10/08/2018

Page 2 of 4

Test Technology:	Test Method(s) ^{1,2} :
Generic/Product Family Standards and Industry Standards (cont'd) Information Technology Equipment (cont'd)	CNS 13438 (2006) (up to 6 GHz); IEC/CISPR 22, Edition 5.2 (2006-03); EN 55022 (2006); EN 55022 (2006) + A1 (2007); EN 55022:2010; IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2009); TCVN 7189:2009 (CISPR 22:2006); VCCI V-3 (2009.04, 2011.04, 2013.04, 2014.04, 2015.04) (up to 6 GHz); CISPR 24 Ed 2.0 (2010-08); EN 55024 (2010); KN 24
Industrial, Scientific, and Medical (ISM) Equipment	AS/NZS CISPR 11 (2002); IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004); IEC/CISPR 11, Ed. 4.1 (2004-06) + A1 (2004); EN 55011 (1998) + A1 (1999) + A2 (2002); IEC/CISPR 11 (2003); EN 55011 (1998) + A2(2002); EN 55011 (2009) + A1 (2010); IEC/CISPR 11 Ed. 5 (2009-05); CISPR 11 Ed. 5.1 (2010)
Measure	IEC 61326-1 Ed. 2.0 (2013)
Military/Defense	 MIL-STD-461F, G Method CE101 (30 Hz to 10 kHz); MIL-STD-461F, G Method CE102 (10 kHz to 10 MHz); MIL-STD-461F, G Method CE106 (10 kHz to 40 GHz); MIL-STD-461F, G Method CS101 (30 Hz to 150 kHz); MIL-STD-461F, G Method CS106; MIL-STD-461F, G Method CS114 (10 kHz to 200 MHz); MIL-STD-461F, G Method CS115; MIL-STD-461F, G Method CS116 (10 kHz to 100 MHz); MIL-STD-461F, G Method RE101 (30 Hz to 100 kHz); MIL-STD-461F, G Method RE101 (30 Hz to 100 kHz); MIL-STD-461F, G Method RE102 (10 kHz to 18 GHz); MIL-STD-461F, G Method RS101 (30 Hz to 100 kHz); MIL-STD-461F, G Method RS101 (30 Hz to 100 kHz); MIL-STD-461F, G Method RS101 (30 Hz to 40 GHz); MIL-STD-461F, G Method LDC101; MIL-STD-704 D, E, F; MIL-HDBK-704-8 Method LDC103; MIL-HDBK-704-8 Method LDC104; MIL-HDBK-704-8 Method LDC105; MIL-HDBK-704-8 Method LDC301; MIL-HDBK-704-8 Method LDC401; MIL-HDBK-704-8 Method LDC501; MIL-HDBK-704-8 Method LDC501; MIL-HDBK-704-8 Method LDC501;

(A2LA Cert. No. 0214.43) 10/08/2018

Page 3 of 4

¹When the date, revision or edition of a test method standard is not identified on the scope of accreditation, the laboratory is expected to be using the current version within one year of the date of publication, per part C., Section 1 of A2LA *R101* - *General Requirements*- *Accreditation of ISO-IEC 17025 Laboratories*. If a specifier/regulator imposes a different transition period, this will supersede the A2LA one-year implementation period.

² The laboratory is only accredited for testing activities outlined within the test methods listed above. Reference to any other activity within these standards, such as risk management or risk assessment, does not fall within the laboratory's accredited capabilities.

On the following types of products:

Telecommunication Equipment, Network Equipment, Industrial and Commercial Equipment, Electronic (Digital) Equipment, Medical, Aerospace, Military. Information Technology Equipment, Multimedia Equipment, Scientific Equipment

Testing Activities Performed in Support of FCC Declaration of Conformity and Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1³

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Unintentional Radiators</u> Part 15B	ANSI C63.4:2014	18000
Industrial, Scientific, and Medical Equipment Part 18	FCC MP-5 (February 1986)	18000

³Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (https://apps.fcc.gov/oetcf/eas/) for a listing of FCC approved laboratories.

Page 4 of 4

(A2LA Cert. No. 0214.43) 10/08/2018

Accredited Laboratory

A2LA has accredited

NATIONAL TECHNICAL SYSTEMS (NTS) - LONGMONT

Longmont, CO

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 8th day of October 2018.

President and CEO For the Accreditation Council Certificate Number 0214.43 Valid to February 29, 2020

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

NTS

END OF REPORT