Allocating resources to improve voting

Stephen C. Graves MIT For the Presidential Commission on Election Administration

September 4, 2013

- Long lines occur when resources are inadequate
- Yet resources are inevitably constrained
- Managers must decide how best to allocate resources to get best overall performance
- Tools exist to help managers understand the trade-offs and make these decisions

- How best to allocate a given number of machines or staff across a set of precincts?
- How many machines (staff) are needed in each precinct to achieve a waiting time service target?
- What if's? How do the answers depend on various estimates and assumptions?

Queuing Theory

Voting as a queuing system

- Demonstrate capabilities of a simple spreadsheet tool
- Relies on "text-book" queuing models
- Could be incorporated into an optimization or search algorithm
- Should be coupled with simulation tool that can validate, examine more carefully impact of daily dynamics, and help with detailed planning

Screen Shot of Resource Allocation Tool

Inputs i	n Yellow				Managerial Parameters					
						X = max-wait-time target		registration service		
Outputs	s in pink					(seconds)	180	time (seconds)	20	
								Target percent for		
						Y = service level	90%	no registration wait	80%	
								-		
								wait time reduction		
								from one more	number of people	
			number of voting	System		Percent wait time greater	# of machines reg'd to	machine (seconds	needed to assure	
precincts	peak arrival rate	average time to vote	stations/machines	Stability?	average waiting time	than X	meet service level	per voter)	no/modest waits	
-	(voters per hour)	(minutes per voter)			(seconds per voter)				-	
1	100	10	22	ОК	17.42	3%	20.33	7.88	1.44	
2	150	10	28	ОК	91.46	19%	29.04	40.30	1.79	
3	200	10	35	ОК	250.74	42%	37.65	126.57	2.11	
4	75	10	22	ОК	0.66	0%	15.89	0.35	1.25	
5	80	10	22	ОК	1.42	0%	16.79	0.73	1.29	
6	120	10	22	ОК	170.37	31%	23.83	87.23	1.58	
7	220	10	38	ОК	342.30	51%	41.08	184.95	2.23	
8	120	10	22	ОК	170.37	31%	23.83	87.23	1.58	
9	180	10	35	ОК	34.15	6%	34.22	12.96	1.98	
10	90	10	22	ОК	5.43	1%	18.56	2.58	1.37	
totals			268						16.62	

Example

- 3 precincts, 15 machines to allocate
- Average time to vote = 6 minutes
- Service target: max wait time of 3 minutes
- Focus on peak period
- Inputs:

precinct	arrival/hr
1	25
2	35
3	45

Suppose we allocate equally:

precinct	arrival/hr	machines	ave wait time (sec's)	% wait more than 3 min's
1	25	5	19	4%
2	35	5	91	18%
3	45	5	549	59%

Can we do better?

Can we improve the allocation?

precinct	arrival/hr	machines	ave wait time (sec's)	% wait more than 3 min's
1	25	4	77	15%
2	35	5	91	18%
3	45	6	101	20%

precinct	arrival/hr	machines	ave wait time (sec's)	% wait more than 3 min's
1	25	3	506	55%
2	35	5	91	18%
3	45	7	31	6%

What if we have one more machine?

What's the value from more resources?

precinct	arrival/hr	machines	Reduction in wait (sec's)
1	25	4	58
2	35	5	65
3	45	6	70

precinct	arrival/hr	machines	ave wait time (sec's)	% wait more than 3 min's	Reduction in wait (sec's)
1	25	4	77	15%	58
2	35	5	91	18%	65
3	45	7	31	6%	21

Suppose we want at most 10% of voters to incur waits more than 3 minutes

precinct	arrival/hr	required machines
1	25	5
2	35	6
3	45	7

			ave wait time	% wait more than 3
precinct	arrival/hr	machines	(sec's)	min's
1	25	5	19	4%
2	35	6	26	5%
3	45	7	31	6%

Suppose we re-design the ballot so that the time to vote is reduced from 6 to 5.4 minutes:

precinct	arrival/hr	machines	ave wait time (sec's)	% wait more than 3 min's
1	25	4	45	9%
2	35	5	48	10%
3	45	6	49	10%

Check-In

- Similar analyses apply here, e.g.
 - Suppose average check-in time = 0.5 minutes
 - How many stations are needed so that no more than 20% of voters experience a wait at check-in?

precinct	arrival/hr	required stations
1	25	1
2	35	2
3	45	2

 Analysis accounts for (& can compare)design of check-in : single line or multiple lines?

Summary

- Waiting occurs due to inadequate resources
- This can occur due to insufficient system resources or due to poor allocation.
- Tools based on queuing theory can provide guidance to improve resource allocation and to determine resource requirements
- Tools require inputs: arrival rates; time to vote; and service targets
- Tools should be deployed with tutorials and with capabilities for detailed simulations