Test Report No. ITR-PR085361 Page 1 of 84 www.nts.com

Test Report of Full Compliance Immunity Testing Performed on the ClearCast Precinct Tabulator

Issue Date: 24 September 2018

Prepared for:

Pro V&V 700 Boulevard South Suite 102 Huntsville, AL 35802

Prepared by: National Technical Systems NTS Longmont 1736 Vista View Drive Longmont, Colorado 80504

This report and the information contained herein represents the results of testing of only those articles/products identified in this document and selected by the client. The tests were performed to specifications and/or procedures approved by the client. National Technical Systems ("NTS") makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it present any statement whatsoever as to the merchantability or fitness of the test article or similar products for a particular purpose. This document shall not be reproduced except in full without written approval from NTS. **NTS**

Test Report No. ITR-PR085361

SIGNATURES

Prepared by:

0

Technical Writer, Greg Gagne

Date: 24 September 2018

4 N) 6

Reviewed by:

Technical Reviewer, John Tate

Date: 25 September 2018

REVISIONS

Revision	Reason for Revision	Date
NR	Initial Release	

Table	e of Co	ontents
	1.0	ADMINISTRATIVE DATA
	1.1	PURPOSE OF TESTS7
	1.2	DESCRIPTION OF TEST ITEM
	1.3	MANUFACTURER
	1.4	REFERENCE DOCUMENTS7
	1.5	TEST RESULTS COMPLIANCE LEVELS
	1.6	QUANTITY OF ITEMS TESTED
	1.7	SECURITY CLASSIFICATION
	1.8	TESTS CONDUCTED BY
	1.9	DISPOSITION OF TEST ITEMS
	1.10	TEST ENVIRONMENT
	1.10.1	IMMUNITY TEST SITE
	1.10.2	MEASUREMENT UNCERTAINTY 11
	1.11	TEST APPARATUS12
	1.12	SOURCE INSPECTION12
	1.13	PURCHASE ORDER NUMBER 12
	2.0	TEST RESULTS SUMMARY
	3.0	ELECTROSTATIC DISCHARGE TEST 14
	3.1	REFERENCES
	3.2	SERIAL NUMBERS 14
	3.3	TEST PROCEDURE
	3.4	SPECIAL CONFIGURATIONS 14
	3.5	TEST RESULTS
	4.0	RADIATED RF IMMUNITY TEST
	4.1	REFERENCES
	4.2	SERIAL NUMBERS

4.3	TEST PROCEDURE
4.4	SPECIAL CONFIGURATIONS 15
4.5	TEST RESULTS
5.0	ELECTRICAL FAST TRANSIENT/BURST TEST
5.1	REFERENCES 16
5.2	SERIAL NUMBERS
5.3	TEST PROCEDURE
5.4	SPECIAL CONFIGURATIONS
5.5	TEST RESULTS
6.0	SURGE IMMUNITY TEST 17
6.1	REFERENCES 17
6.2	SERIAL NUMBERS
6.3	TEST PROCEDURE
6.4	SPECIAL CONFIGURATIONS
6.5	TEST RESULTS
7.0	CONDUCTED RF IMMUNITY TEST 18
7.1	REFERENCES 18
7.2	SERIAL NUMBERS
7.3	TEST PROCEDURE
7.4	SPECIAL CONFIGURATIONS
7.5	TEST RESULTS
8.0	POWER FREQUNCY H-FIELD IMMUNITY TEST 19
8.1	REFERENCES 19
8.2	SERIAL NUMBERS 19
8.3	TEST PROCEDURE
8.4	SPECIAL CONFIGURATIONS 19
8.5	TEST RESULTS 19
9.0	VOLTAGE DIPS AND INTERRUPTS TEST
9.1	REFERENCES

9.2	SERIAL NUMBERS	20
9.3	TEST PROCEDURE	20
9.4	SPECIAL CONFIGURATIONS	20
9.5	TEST RESULTS	20
APPE	NDIX A: ELECTROSTATIC DISCHARGE TEST DATA	21
APPE	NDIX B: RADIATED RF IMMUNITY TEST DATA	29
APPE	NDIX C: ELECTRICAL FAST TRANSIENT/BURST TEST DATA	36
APPE	NDIX D: SURGE IMMUNITY TEST DATA	41
APPE	NDIX E: CONDUCTED RF IMMUNITY TEST DATA	48
APPE	NDIX F: POWER FREQUENCY H-FIELD TEST DATA	53
APPE	NDIX G: VOLTAGE DIPS AND INTERRUPTS TEST DATA	60
APPE	NDIX H: PRODUCT DATA SHEET	65
APPE	NDIX I: TEST LOG	69
APPE	NDIX J: LABORATORY ACCREDITATIONS	78
END (OF REPORT	84

1.0 ADMINISTRATIVE DATA

1.1 <u>PURPOSE OF TESTS</u>

This report documents the test efforts performed on the ClearCast Precinct Tabulator to verify compliance to IEC 60601-1-2: 4th Ed., 2014-02 Medical Electrical Equipment - Part 1-2: General Requirements for Basic Safety and Essential Performance - Collateral Standard: Electromagnetic Disturbances -Requirements and Tests. This was a formal qualification test and was conducted from 06-12 September 2018.

The normative references of this standard define the test methods used for the immunity testing. These standards are contained in Table 1-1.

1.2 DESCRIPTION OF TEST ITEM

The Unit Under Test (UUT) is a precinct tabulator, designed for use in voting during elections.

1.3 <u>MANUFACTURER</u>

Clear Ballot Group 700 Boulevard South Suite 102 Huntsville, AL 35802

1.4 <u>REFERENCE DOCUMENTS</u>

- 1. Pro V&V SOW
- 2. ISO 17025:2005

The standards applied to this product were IEC 60601-1-2: 4th Ed., 2014-02. This is the collateral for Medical Electrical Equipment. The dated references outlined in Table 1 defines the test methods used for the immunity testing. Performance criteria for all immunity testing were derived from IEC 60601-1-2, 4th Ed., 2014-02, Table 3.

Requirement	Specification	Test Method
IEC 60601-1- 2, 4 th Ed.	Electrostatic Discharge	IEC 61000-4-2: 2008
(2014-02),		
Medical Electrical	Radiated RF Immunity	IEC 61000-4-3: 2006 +
Equipment - Part 1-2:		A1: 2007 +A2: 2010
General Requirements	Electrical Fast	IEC 61000-4-4: 2012
For Basic Safety and	Transient/Burst	
Essential Performance -	Surge Immunity	IEC 61000-4-5: 2005
Collateral Standard:		
Electromagnetic	Conducted RF Immunity	IEC 61000-4-6: 2013
disturbances -		
Requirements and	Power Frequency H-field	IEC 61000-4-8: 2009
Tests		
	Voltage Dips, Interrupts	IEC 61000-4-11: 2004

Table 1-1: (IEC Standards)

1.5 <u>TEST RESULTS COMPLIANCE LEVELS</u>

Compliance levels to the immunity levels specified in these standards are summarized in Table 1-2.

Immunity Test	IEC 60601, 4 th Edition Test	Compliance Level
	Level	
Electrostatic	<u>+</u> 8 kV Contact, HCP & VCP	<u>+</u> 8 kV Contact, HCP & VCP
Discharge	<u>+</u> 2 kV, <u>+</u> 4 kV, <u>+</u> 8 kV, <u>+</u> 15 kV Air	<u>+</u> 2 kV, <u>+</u> 4 kV, <u>+</u> 8 kV, <u>+</u> 15 kV
		Air
Radiated RF	80 MHz - 2.7 GHz, 3 V/m, 80% 1	80 MHz - 2.7 GHz, 3 V/m, 80%
Immunity	kHz AM	1 kHz AM
Prox. Fields from	Reference IEC 60601-1-2, 4 th	Reference IEC 60601-1-2, 4 th
RF Wireless	Edition, Section 8.10, Table 9	Edition, Section 8.10, Table 9
EFT/Burst	<u>+</u> 2 kV (100 kHz rep rate) AC	<u>+</u> 2 kV (100 kHz rep rate) AC
	mains	mains
	<u>+</u> 1 kV (100 kHz rep rate) I/O > 3	<u>+</u> 1 kV (100 kHz rep rate) I/O > 3
	m	m
Surge Immunity	<u>+</u> 0.5 kV & <u>+</u> 1 kV line-line, AC	<u>+</u> 0.5 kV & <u>+</u> 1 kV line-line, AC
	mains	mains
	<u>+</u> 0.5 kV, <u>+</u> 1 kV, <u>+</u> 2 kV line-	<u>+</u> 0.5 kV, <u>+</u> 1 kV, <u>+</u> 2 kV line-
	ground, AC mains	ground, AC mains
Conducted RF	150 kHz to 80 MHz, 3 Vrms, 80%	150 kHz to 80 MHz, 3 Vrms,
Immunity	1 kHz AM, power and I/O	80% 1 kHz AM, power and I/O
	6 Vrms (+modulation) for ISM	6 Vrms (+modulation) for ISM
	frequencies	frequencies
Power	50 and 60 Hz, 30 A/m, x-, y-, and	50 and 60 Hz, 30 A/m, x-, y-,
Frequency H-	z-axes	and z-axes
field Immunity		
Voltage Dips and	100% reduction for 0.5 cycles (at	100% reduction for 0.5 cycles
Interrupts	0°, 45°, 90°, 135°, 180°, 225°,	(at 0°, 45°, 90°, 135°, 180°,
	270° and 315°)	225°, 270° and 315°)
	100% reduction for 1.0 cycle (at	100% reduction for 1.0 cycle (at
	0°)	0°)
	30% reduction for 25/30 cycles	30% reduction for 25/30 cycles
	(at 0°)	(at 0°)
	100% reduction for 250/300	100% reduction for 250/300
	cycles (at 0°)	cycles (at 0°)

Table 1-2 (Professional Healthcare Environment)

1.6 QUANTITY OF ITEMS TESTED

Quantity	Test Item Description	Model Number	Serial Number
1	ClearCast Precinct Tabulator	Model 2, Version A	Unit 1

1.7 SECURITY CLASSIFICATION

Unclassified

1.8 <u>TESTS CONDUCTED BY</u>

National Technical Systems NTS Longmont 1736 Vista View Drive Longmont, Colorado 80504

1.9 DISPOSITION OF TEST ITEMS

Returned to:

Pro V&V 700 Boulevard South Suite 102 Huntsville, AL 35802

1.10 TEST ENVIRONMENT

1.10.1 Immunity Test Site

The immunity testing was performed at NTS's test facility in Longmont, Colorado. The radiated field immunity testing was performed in a ferrite lined, shielded enclosure. The enclosure is 10' high x 12' wide x 20' long in size and meets the field uniformity requirements of IEC 61000-4-3. The size of the chamber allows 2-meter separation between the antenna and the UUT.

From 80 MHz to 1 GHz, field uniformity deviation for NTS's completely anechoic lined chamber (CALC) is a maximum of 7.4 dB for three frequencies for vertical polarization (1.1% of all test frequencies) and 7.3 dB for two frequencies for horizontal polarization (0.8% of all test frequencies). This is allowed by IEC 61000-4-3, as follows:

"In the frequency range up to 1 GHz, a tolerance greater than + 6 dB, up to +10 dB, but not less than -0 dB is allowed for a maximum of 3% of the test

frequencies, provided that the actual tolerance is stated in the test report." (*Ref. IEC 61000-4-3, Ed. 3.2 (2010), Section 6.2*)

All other immunity testing was performed on a ground reference plane measuring 3.05 m by 3.05 m, or 9.3 m². The ground plane was made of 90 mil steel and extended beyond the UUT by 0.5 meters and all sides. It was bonded to the protective earth ground of the test facility and complied with all applicable standards.

1.10.2 Measurement Uncertainty

The measurement uncertainty for NTS's immunity test facility complies with the requirements defined in CISPR 16. The complete calculations of measurement uncertainty is contained in a memo, which is available upon request. However, a summary of NTS's measurement uncertainty is given in Table 1-3.

Test	Measurement Uncertainty	Reference
Electrostatic	Contact Voltage: 1.9%	Accredited Calibration Data
Discharge	Risetime: 60 ps	Sheet
	Peak Current: 2.8%	
	30 ns Current: 3.8%	
	60 ns Current: 9%	
	Indicated Voltage: 1.9%	
Radiated RF	V-pole: 1.2 dB	Worksheets located at
Immunity	H-pole: 0.7 dB	
Electrical Fast	Voltage: 0.01 kV	H:\Calibration\Measurement
Transient	Risetime: 0.45 nsec	Uncertainty
	Pulse Width: 1.08 nsec	
Surge Immunity	O.C. Voltage: 0.01 kV	
	Risetime: 0.1 usec	
	Pulse Width: 1.76 usec	
	S. C. Current: 0.91 A	
	Risetime: 0.08 usec	
	Pulse Width: 0.15 usec	
Conducted RF	0.24 dB	
Immunity		
Power	0.87 dB	
Frequency H-		
field Immunity		
Voltage Dips &	Voltage: 10.38 Volts	
Interruptions	Duration: 0.23 msec	

Table 1-3

1.11 TEST APPARATUS

The instrumentation used in the performance of these tests is periodically calibrated and standardized within manufacturer's rated accuracies and are traceable to the National Institute of Standards and Technology. The calibration procedures and practices are in accordance with ISO 17025:2005. Certification of calibration is on file subject to inspection by authorized personnel.

1.12 SOURCE INSPECTION

NTS QA

1.13 PURCHASE ORDER NUMBER

2018-010

2.0 TEST RESULTS SUMMARY

Table 2-1: Summary of Test Results

Test	Specification	Test Dates	Results
Electrostatic Discharge	IEC 61000-4-2	12 September 2018	Complies
Radiated RF Immunity	IEC 61000-4-3	06 September 2018	Complies
Electrical Fast Transient/Burst	IEC 61000-4-4	10 September 2018	Complies
Surge Immunity	IEC 61000-4-5	11 September 2018	Complies
Conducted RF Immunity	IEC 61000-4-6	10 September 2018	Complies
Power H-Field Immunity	IEC 61000-4-8	11 September 2018	Complies
Voltage Dips and Interrupts	IEC 61000-4-11	10 September 2018	Complies

3.0 ELECTROSTATIC DISCHARGE TEST

3.1 <u>REFERENCES</u>

IEC 61000-4-2: 4th Ed. (2014-02)

3.2 SERIAL NUMBERS

Table 3-1: Serial Numbers

Unit 1

3.3 <u>TEST PROCEDURE</u>

The UUT was subjected to Electrostatic Discharge Testing per IEC 61000-4-2 and in accordance with the referenced documents. Contact discharge was performed at levels of ± 8 kV at applicable (conductive) test points. Air discharge was performed for non-conductive surfaces of the product at levels of ± 2 kV, ± 4 kV, ± 8 kV and ± 15 kV. Indirect discharge to the horizontal coupling plane (HCP) and the vertical coupling plane (VCP) were also performed at levels of ± 8 kV. ESD testing was also performed on applicable patient coupling ports as well as signal input/output ports. If this testing was applicable, it will be documented on the test data sheet.

3.4 SPECIAL CONFIGURATIONS

N/A

3.5 TEST RESULTS

The UUT maintained essential performance and basic safety and therefore complied with the requirements of this test.

Note: In the event that no discharge occurs when ESD testing is performed on a product, the data sheet will state "no [contact or air] discharge points found".

Electrostatic Discharge Test Data is presented in Appendix A.

4.0 RADIATED RF IMMUNITY TEST

4.1 <u>REFERENCES</u>

IEC 61000-4-3: 4th Ed. (2014-02)

4.2 SERIAL NUMBERS

Table 4-1: Serial Numbers

Unit 1

4.3 <u>TEST PROCEDURE</u>

Radiated RF immunity testing was performed on the UUT in accordance with the test methods specified in IEC 61000-4-3. The UUT, which was a table-top unit, was placed on a non-conductive table inside the completely anechoic-lined chamber. The frequency range for this testing was 80 MHz – 1.0 GHz and the UUT was placed 2 meters from the radiating antenna, which was 1.5 meters above the floor of the chamber. Testing was performed in both horizontal and vertical antenna polarizations. The frequency was incremented in 1% steps, with a 3 second dwell time for each test frequency. The UUT was rotated so that all four sides were illuminated in the 10 V/m field. The field was amplitude modulated with a 1 kHz sine wave to a depth of 80%.

4.4 SPECIAL CONFIGURATIONS

N/A

4.5 <u>TEST RESULTS</u>

The UUT maintained essential performance and basic safety and therefore complied with the requirements of this test.

Radiated RF Immunity Test Data is presented in Appendix B.

5.0 ELECTRICAL FAST TRANSIENT/BURST TEST

5.1 <u>REFERENCES</u>

IEC 61000-4-4: 4th Ed. (2014-02)

5.2 SERIAL NUMBERS

Table 5-1: Serial Numbers

Unit 1

5.3 <u>TEST PROCEDURE</u>

Electrical fast transient/burst testing was performed on the UUT in accordance with EN 61000-4-4. The UUT's AC power was tested via direct injection at a level of \pm 2 kV. A 100 kHz repetition rate was used for this testing and a minimum of 1 minute was used for each mode of injection.

5.4 SPECIAL CONFIGURATIONS

N/A

5.5 TEST RESULTS

The UUT maintained essential performance and basic safety and therefore complied with the requirements of this test.

Electrical Fast Transient/burst Test Data is presented in Appendix C.

6.0 SURGE IMMUNITY TEST

6.1 <u>REFERENCES</u>

IEC 61000-4-5: 4th Ed. (2014-02)

6.2 SERIAL NUMBERS

Table 6-1: Serial Numbers

Unit 1

6.3 <u>TEST PROCEDURE</u>

Surge immunity testing was performed on the UUT in accordance with the test methods specified in IEC 61000-4-5. The UUT's AC power was tested via direct injection at levels of +0.5 kV, +1.0 kV and +2.0 kV for differential and common modes. Surges were injected at 0 degrees, 90 degrees, 180 degrees and 270 degrees of the input AC waveform. Five pulses were injected for each test configuration and a maximum injection rate of once every 30 seconds was used.

6.4 SPECIAL CONFIGURATIONS

N/A

6.5 <u>TEST RESULTS</u>

The UUT maintained essential performance and basic safety and therefore complied with the requirements of this test.

Surge Immunity Test Data is presented in Appendix D.

7.0 CONDUCTED RF IMMUNITY TEST

7.1 <u>REFERENCES</u>

IEC 61000-4-6: 4th Ed. (2014-02)

7.2 SERIAL NUMBERS

Table 7-1: Serial Numbers

Unit 1

7.3 <u>TEST PROCEDURE</u>

Conducted RF immunity testing was performed on the UUT in accordance with the test methods specified by IEC 61000-4-6. The UUT was subjected to injected RF signals on its input AC power cable. Injection on the AC leads was performed via a coupling/decoupling network (CDN). The frequency range for this testing was 150 kHz to 80 MHz. The test frequency was stepped in 1% increments with a three (3) second dwell time for each injection frequency. The injection level used for all testing was 10 Vrms and the carrier was amplitude modulated with 1 kHz sine wave to a depth of 80%.

7.4 SPECIAL CONFIGURATIONS

N/A

7.5 <u>TEST RESULTS</u>

The UUT maintained essential performance and basic safety and therefore complied with the requirements of this test.

Conducted RF Immunity Test Data is presented in Appendix E.

8.0 POWER FREQUNCY H-FIELD IMMUNITY TEST

8.1 <u>REFERENCES</u>

IEC 61000-4-8: 4th Ed. (2014-02)

8.2 SERIAL NUMBERS

Table 8-1: Serial Numbers

Unit 1

8.3 TEST PROCEDURE

Power frequency H-field immunity testing was performed on the UUT in accordance with the test methods specified by IEC 61000-4-8. The UUT was exposed to a 30 A/m field at both 50 and 60 Hz. The immersion method was used for this testing and a 1.5 m x 2.0 m coil was utilized. All three axes (x, y, and z) of the various components were subjected to a field of 30 A/m for a period of 60 seconds per location

8.4 SPECIAL CONFIGURATIONS

N/A

8.5 <u>TEST RESULTS</u>

The UUT maintained essential performance and basic safety and therefore complied with the requirements of this test.

Power Frequency H-Filed Immunity Test Data is presented in Appendix F.

9.0 VOLTAGE DIPS AND INTERRUPTS TEST

9.1 <u>REFERENCES</u>

IEC 61000-4-11: 4th Ed. (2014-02)

9.2 SERIAL NUMBERS

Table 9-1: Serial Numbers

Unit 1

9.3 <u>TEST PROCEDURE</u>

Voltage dip and interrupt testing was performed on the UUT, in accordance with EN 61000-4-11. The UUT was subjected to the following voltage fluctuations on its AC power input:

- 30% reduction for 0.6 cycles at 0°, 90°, 180°, and 270°
- 60% reduction for 6 cycles at 0°, 90°, 180°, and 270°
- 60% reduction for 60 cycles at 0°, 90°, 180°, and 270°
- 100% reduction for 300 cycles at 0° and 180°

9.4 SPECIAL CONFIGURATIONS

N/A

9.5 <u>TEST RESULTS</u>

The UUT maintained essential performance and basic safety and therefore complied with the requirements of this test.

Voltage Dips and Interrupts Test Data is presented in Appendix G.

Test Report No. ITR-PR085361

APPENDIX A: Electrostatic Discharge Test Data

21

	Manufacture	: Cl	ear Bal	lot Group (ma	nufacturer) Pr	Project Number:	PR085361	
Customer F	Representative	: St	Stephen Han		Test Area:	GP1		
	Model	l: C	learCa	st (Model 2,	Version A)	S/N:	CASTD002	007
Standa	rd Referenced	l: E	AC 20	05 VVSG		Date:	September 1	2, 2018
	Temperature	: 25	5.4°C]	Humidity:	34% Pressure:	834 mb	
	- Input Voltage	: 12	20Vac/	60Hz	· -			
Configu	ration of Unit	t: So	cannin	g ballots				
	Test Engineer	: C	asey L	ockhart				
PR085361-4-2.de	DC							FR0100
Test	Voltage	Pola	arity	Number	Pulses	Comments	Criteria	Pass /
Location	Level (kV)	+	-	of Pulses	Per Second		Met	Fail
					Indirect Dis	charge Points		
VCP	8	х	х	10	1	Front Side	А	Pass
VCP	8	х	х	10	1	Left Side	Α	Pass
VCP	8	х	х	10	1	Right Side	А	Pass
VCP	8	х	х	10	1	Back Side	А	Pass
НСР	8	х	х	10	1	Edge of HCP at Front of UUT	А	Pass
				Contact	Discharge F	Points - RED Arrows.	÷	
Figure A2	8	х	х	10	1		А	Pass
Figure A3	8	х	x	10	1		А	Pass
Figure A4	8	х	х	10	1		А	Pass
Figure A5	8	х	x	10	1		В	Pass
				Air Di	scharge Poin	nts - BLUE Arrows.		
Figure A2	2, 4, 8, 15	х	x			No discharge points found.		
Figure A3	2, 4, 8, 15	х	x			No discharge points found.		
Figure A4	2, 4, 8, 15	х	x	10	1		В	Pass
Figure A5	2, 4, 8, 15	х	x			No discharge points found.		

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 12, 2018
PR085361-4-2.doc		-	FR0100
			12

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 12, 2018
PR085361-4-2.doc			FR0100
	Figure A2 Electrostatic Discharge 1	Test Setup	
	Figure A2. Electrostatic Discharge	Test Setup.	

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 12, 2018
PR085361-4-2.doc			FR0100
		PR085361	

Figure A3. Electrostatic Discharge Test Setup.

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 12, 2018
PR085361-4-2.doc		_	FR0100
	Figure A4 Electrostatic Discharge	Test Setun	
	Figure A4. Electrostatic Discharge	rest Setup.	

Figure A4. Electrostatic Discharge Test Setup.

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 12, 2018
PR085361-4-2.doc			FR0100
	Farme A5 Elastractatia Diagharage	Fact Satur	
	Figure A5. Electrostatic Discharge	rest Setup.	

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han Test Area: GP1		
Model:	ClearCast (Model 2, Version A)	CASTD002007	
Standard Referenced:	EAC 2005 VVSG	Date:	September 12, 2018
R085361-4-2.doc			FR0100

PR085361-4-2.doc

Test Equipment List

ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1039	Fluke	83-3	69811227	Multimeter/Frequency Meter	10/24/2017	10/24/2018
1249	KeyTek	MZ-15/EC	0609258	ESD Gun with TPC-2A SN:0609259	07/13/2018	07/13/2019
1281	EMC Partner	ESD3000	284	ESD Test System	12/20/2017	12/20/2018
1569	California Instruments by Ametek	5001IX-208- CTS, Series II	1514A02227	5kV Progammable Power Supply	NA	NA
1587	EXTECH Instruments	445715	NA	Hygro-Thermometer	01/25/2018	01/25/2019

Test Report No. ITR-PR085361

APPENDIX B: Radiated RF Immunity Test Data

29

Radiated RF Immunity per IEC / EN 61000-4-3

Manufacturer:	Clear Ballot Group ((manufacturer)	Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han			Test Area:	10m2
Model:	ClearCast (Model	2, Version A))	S/N:	Unit 1
Standard Referenced:	EAC 2005 VVSG			Date:	September 6, 2018
Temperature:	24°C	Humidity:	47%	Pressure:	845mb
Input Voltage:	120Vac/60Hz				
Configuration of Unit:	Scanning ballots				
Test Engineer:	Kevin Johnson				
R085361-4-3.doc					FR0100

PR085361-4-3.doc

Frequency		Mo	dulation		Step	Field	Polarity	Dwell	Comments	Criteria	Pass /
(MHz)	Туре	%	Freq	Form	Size	(V/m)	(V or H)	(sec)		Met	Fail
					(70)						
80 - 1000	AM	80	1kHz	Sine	1	10	V	3	Front Side	А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	Н	3		А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	V	3	Right Side	А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	Н	3		А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	V	3	Back Side	А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	Н	3		А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	V	3	Left Side	А	Pass
80 - 1000	AM	80	1kHz	Sine	1	10	Н	3		Α	Pass

Radiated RF Immunity per IEC / EN 61000-4-3

Figure B1. Radiated RF Immunity Test Setup - Front Side.

33

Radiated RF Immunity per IEC / EN 61000-4-3 Manufacturer: Clear Ballot Group (manufacturer) Pro V&V (client) Project Number: PR085361 Customer Representative: Stephen Han Test Area: 10m2 Model: ClearCast (Model 2, Version A) S/N: Unit 1 Standard Referenced: EAC 2005 VVSG Date: September 6, 2018 PR085361-4-3.doc FR0100 PR085361 Art. Figure B4. Radiated RF Immunity Test Setup – Left Side.

34

Radiated RF Immunity per IEC / EN 61000-4-3

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361		
Customer Representative:	Stephen Han	Han Test Area: 10m2			
Model:	ClearCast (Model 2, Version A)	S/N:	Unit 1		
Standard Referenced:	EAC 2005 VVSG	Date:	September 6, 2018		
)85361-4-3.doc			FR0100		

PR085361-4-3.doc

Test Equipment List

ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1005	EMCO	3140	1012	Biconilog Antenna	NA	NA
1024	Amplifier Research	FP4000	18358	Isotropic Field Probe (10 kHz - 1 GHz)	10/04/2017	10/04/2018
1055	Marconi	2024	112113/027	Signal Generator (10 kHz - 2.4 GHz)	05/31/2018	05/31/2019
1181	EMCI	RFS	V2.5.8	Initial Release 02 July 2004	NA	NA
1250	OPHIR	5127F	1034	RF Power Amplifier 20- 1000MHz, 200 Watts	NA	NA
1396	CIR Enterprises	10m Chamber #2	002	10m Chamber with 4m turntable	03/29/2018	03/29/2020
1453	Giga-tronics	GT-8888A	8888A0336	10 MHz to 8 GHz, +20 dBm, 25 Vdc Power Meter	03/29/2018	03/29/2019
1492	Fluke	87/5 Multimeter	23350032	True RMS Multimeter	05/08/2018	05/08/2019
1578	Werlatone	C3908-10	107952	1500 Watts, 50 dB Dual Directional Coupler (80MHz	06/25/2018	06/25/2019
1586	EXTECH Instruments	445715	NA	Hygro-Thermometer	01/25/2018	01/25/2019

Test Report No. ITR-PR085361

APPENDIX C: Electrical Fast Transient/Burst Test Data

Electrical Fast Transient/Burst per IEC / EN 61000-4-4

Manufacturer:	Clear Ballot Group (m	nanufacturer) Pro V&V (client)	Project Number:	PR085361	
Customer Representative:	Stephen Han		Test Area:	GP1	
Model:	ClearCast (Model 2	2, Version A)	S/N:	CASTD002007	
Standard Referenced:	EAC 2005 VVSG		Date:	September 10, 2018	
Temperature:	23.6°C	Humidity: 34%	Pressure:	836 mb	
Input Voltage:	120Vac/60Hz		_		
Configuration of Unit:	Scanning ballots				
Test Engineer:	Casey Lockhart				
PR085361-4-4.doc				FR0100	

Voltage	Pola	arity	Time	Injection	L	L	L	N	P	Rep Errog	Comments	Criteria	Pass /
(kV)	+	-	(sec)	Туре	1	4	3		Ľ	rreq.		Wiet	гап
2.0	х		60	CDN	х					100 kHz	AC	А	Pass
2.0		х	60	CDN	х					100 kHz		А	Pass
2.0	х		60	CDN		х				100 kHz		А	Pass
2.0		х	60	CDN		x				100 kHz		А	Pass
2.0	X		60	CDN					x	100 kHz		А	Pass
2.0		х	60	CDN					x	100 kHz		А	Pass
2.0	X		60	CDN	x	x			x	100 kHz		A	Pass
2.0		х	60	CDN	x	x			x	100 kHz		A	Pass

Electrical Fast Transient/Burst per IEC / EN 61000-4-4

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 10, 2018
PR085361-4-4.doc			FR0100
	<image/>	Test Setup.	

Electrical Fast Transi	ent/Burst per IEC / EN 61000-4-4		
Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 10, 2018
PR085361-4-4.doc			FR0100

Figure C2. Electrical Fast Transient Test Setup – AC Mains.

Electrical Fast Transient/Burst per IEC / EN 61000-4-4

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	FCC Part 15, EAC 2005 VVSG	Date:	September 10, 2018
R085361-4-4.doc			FR0100

PR085361-4-4.doc

Test Equipment List

ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1039	Fluke	83-3	69811227	Multimeter/Frequency Meter	10/24/2017	10/24/2018
1184	KeyTek	CEWare	4.0	KeyTek EMCPro Control Software for EFT, Surge, H-F	NA	NA
1284	ThermoFischer Scientific	EMC Pro Plus - USA	0705276	EFT, Surge, H-field & PQF Immunity Test Generator	07/05/2018	07/05/2019
1371	Tektronix	TDS2002B	C103483	Oscilloscope, 60 MHz, 2-channel	01/26/2018	01/26/2019
1587	EXTECH Instruments	445715	NA	Hygro-Thermometer	01/25/2018	01/25/2019

Test Report No. ITR-PR085361

APPENDIX D: Surge Immunity Test Data

Manufacturer:	Clear Ballot Group (r	nanufacturer) I	Pro V&V (cli	ent)	Project	Number:	PR085361	
Customer Representative:	Stephen Han				Т	est Area:	GP1	
Model:	ClearCast (Model	2, Version A)				S/N:	CASTD002	007
Standard Referenced:	EAC 2005 VVSG					Date:	September 1	11, 2018
Temperature:	26.2°C	Humidity:	30%			Pressure:	835 mb	
Input Voltage:	120Vac/60Hz							
Configuration of Unit:	Scanning ballots							
Test Engineer:	Casey Lockhart							
PR085361-4-5.doc								FR0100

Voltage (kV)	Pola +	rity -	L 1	L 2	L 3	N	P E	Phase (deg)	Number of Pulses	Delay (sec)	Comments	Criteria Met	Pass / Fail
0.5	x		x			x		0	5	30	Differential Mode	A	Pass
0.5		х	x			x		0	5	30		А	Pass
0.5	х		х			х		90	5	30		А	Pass
0.5		х	х			x		90	5	30		А	Pass
0.5	х		х			x		180	5	30		А	Pass
0.5		х	x			х		180	5	30		А	Pass
0.5	х		x			x		270	5	30		А	Pass
0.5		х	x			х		270	5	30		А	Pass
0.5	x		x				х	0	5	30	Common Mode Line	А	Pass
0.5		х	х				х	0	5	30		А	Pass
0.5	x		x				х	90	5	30		А	Pass
0.5		х	x				x	90	5	30		А	Pass
0.5	x		x				x	180	5	30		А	Pass
0.5		х	x				x	180	5	30		А	Pass
0.5	x		x				x	270	5	30		А	Pass
0.5		х	x				x	270	5	30		А	Pass
0.5	x					x	x	0	5	30	Common Mode Neutral	А	Pass
0.5		х				x	x	0	5	30		А	Pass
0.5	x					x	x	90	5	30		А	Pass
0.5		х				x	x	90	5	30		А	Pass
0.5	x					x	x	180	5	30		А	Pass
0.5		х				x	x	180	5	30		А	Pass
0.5	х					x	x	270	5	30		А	Pass
0.5		х				x	x	270	5	30		А	Pass

	М	[anufa	ctur	er:	Cl	Clear Ballot Group (manufacturer) Pro V&V (client)						Project Number:	PR085361	
Custom	er Rep	presen	tativ	ve:	St	eph	en H	Ian			Test Area:	GP1		
		Ν	/lod	el:	ClearCast (Model 2, Version A)							S/N:	CASTD002	007
Sta	ndard	Refer	ence	ed:	EAC 2005 VVSG							Date:	September 1	1, 2018
	Т	Temper	atu	re:	26.2°C Humidity: 30% Pressu						Pressure:	835 mb		
	In	put Vo	oltag	ge:	12	20Va	ac/6	0Hz	_			-		
Con	figura	tion of	f Ur	nit:	Sc	cann	ing	ballots				-		
	Те	est Eng	gine	er:	Са	asey	Lo	ckhart						
PR085361-4	-5.doc													FR0100
Voltage	Pola	arity	L	L	L	N	Р	Phase	Number	Delay		Comments	Criteria	Pass /
(kV)	+	-	1	2	3		E	(deg)	of Pulses	(sec)			Met	Fail
1.0	х		х			х		0	5	45	Differ	rential Mode	А	Pass
1.0		х	х			х		0	5	45			А	Pass
1.0	х		х			х		90	5	45			А	Pass
1.0		х	х			х		90	5	45			А	Pass
1.0	x		х			x		180	5	45			А	Pass
1.0		х	x			х		180	5	45			А	Pass
1.0	х		х			x		270	5	45			А	Pass
1.0		х	x			х		270	5	45			А	Pass
1.0	х		х				x	0	5	45	Comr	non Mode Line	А	Pass
1.0		х	x				x	0	5	45			А	Pass
1.0	х		x				x	90	5	45			А	Pass
1.0		х	x				x	90	5	45			А	Pass
1.0	х		х				x	180	5	45			А	Pass
1.0		х	х				x	180	5	45			А	Pass
1.0	x		x				x	270	5	45			А	Pass
1.0		х	х				x	270	5	45			А	Pass
1.0	x					x	x	0	5	45	Comr	non Mode Neutral	А	Pass
1.0		х				x	x	0	5	45			А	Pass
1.0	x					х	x	90	5	45			А	Pass
1.0		x				x	x	90	5	45			А	Pass
1.0	x					x	x	180	5	45			Α	Pass
1.0		х				x	x	180	5	45			А	Pass
1.0	x					x	x	270	5	45			Α	Pass
1.0		х				x	x	270	5	45			Α	Pass
2.0	x		х			х		0	5	60	Differ	rential Mode	А	Pass

	М	[anufa	cture	er:	Cl	ear I	Ballo	ot Group (ma	nufacturer) Pr	o V&V (cli	ient)	Project Number:	PR085361	
Custom	er Rej	presen	tativ	ve:	St	ephe	en F	Ian			Test Area:	GP1		
		Ν	Iod	el:	ClearCast (Model 2, Version A)							S/N:	CASTD002	007
Sta	ndard	Refere	ence	d:	EAC 2005 VVSG							Date:	September 1	1, 2018
	Т	Temper	ratui	re:	26	5.2°C	C]	Humidity:	30%		Pressure:	835 mb	
	In	put Vo	oltag	ge:	12	20Va	ac/6	0Hz						
Con	figura	tion of	f Un	it:	Sc	cann	ing	ballots						
	Те	est Eng	gine	er:	Са	asey	Lo	ckhart						
PR085361-4	-5.doc													FR0100
Voltage	Pola	arity	L	L	L	N	Р	Phase	Number	Delay		Comments	Criteria	Pass /
(kV)	+	-	1	2	3		E	(deg)	of Pulses	(sec)			Met	Fail
2.0		х	x			х		0	5	60			А	Pass
2.0	х		x			x		90	5	60			А	Pass
2.0		х	x			x		90	5	60			А	Pass
2.0	х		x			x		180	5	60			А	Pass
2.0		х	x			x		180	5	60			А	Pass
2.0	х		x			x		270	5	60			А	Pass
2.0		х	x			x		270	5	60			А	Pass
2.0	х		x				x	0	5	60	Comm	non Mode Line	А	Pass
2.0		х	x				x	0	5	60			А	Pass
2.0	x		x				x	90	5	60			А	Pass
2.0		х	x				x	90	5	60			А	Pass
2.0	x		x				x	180	5	60			А	Pass
2.0		х	x				x	180	5	60			А	Pass
2.0	х		x				х	270	5	60			А	Pass
2.0		х	x				x	270	5	60			А	Pass
2.0	х					х	x	0	5	60	Comm	non Mode Neutral	А	Pass
2.0		х				x	x	0	5	60			А	Pass
2.0	х					х	x	90	5	60			А	Pass
2.0		х				x	x	90	5	60			А	Pass
2.0	х					x	x	180	5	60			А	Pass
2.0		х				x	x	180	5	60			А	Pass
2.0	х					x	x	270	5	60			А	Pass
2.0		х				x	x	270	5	60			А	Pass

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 11, 2018
PR085361-4-5.doc			FR0100

Figure D1. Surge Immunity Test Setup.

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 11, 2018
PR085361-4-5.doc			FR0100
		PRO	085.

30

EN

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 11, 2018
085361-4-5.doc			FR0100

PR085361-4-5.doc

Test Equipment List							
ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due	
1039	Fluke	83-3	69811227	Multimeter/Frequency Meter	10/24/2017	10/24/2018	
1184	KeyTek	CEWare	4.0	KeyTek EMCPro Control Software for EFT, Surge, H-F	NA	NA	
1284	ThermoFischer Scientific	EMC Pro Plus - USA	0705276	EFT, Surge, H-field & PQF Immunity Test Generator	07/05/2018	07/05/2019	
1371	Tektronix	TDS2002B	C103483	Oscilloscope, 60 MHz, 2-channel	01/26/2018	01/26/2019	
1587	EXTECH Instruments	445715	NA	Hygro-Thermometer	01/25/2018	01/25/2019	
1596	California Instruments & AMETEK	iXGui	V3.0.0	AC Source Control and Scripting Software	NA	NA	

Test Report No. ITR-PR085361

APPENDIX E: Conducted RF Immunity Test Data

	Manufac	cturer:	Clear Ballot Group (manufacturer) Pro V&V (client)		Project Number:	PR085361			
Customer I	Represent	ative:	Stephen I	Han			Test Area:	GP1	
	Ν	Iodel:	ClearCast	t (Model 2,	Version A	A)	S/N:	S/N: CASTD002007	
Standa	rd Refere	enced:	EAC 200	5 VVSG			Date:	September 1	10, 2018
	Temper	ature:	22.8°C	1	Humidity:	32%	Pressure:	836 mb	
	Input Vo	ltage:	120Vac/6	60Hz					
Configu	uration of	Unit:	Scanning	ballots					
	Test Eng	ineer:	Casey Lo	ckhart					
PR085361-4-6.d	ос								FR0100
Frequency	N	lodulat	ion	Level	Dwell	C	omments	Criteria	Pass /
(MHz)	Туре	%	Freq	(Vrms)	(sec)			Met	Fail
0.150 - 80.0	AM	80	1 kHz	10	3	AC using M3 CDN	1	А	Pass

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 10, 2018
PR085361-4-6.doc			FR0100

Figure E1. Conducted RF Immunity Test Setup.

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 10, 2018
PR085361-4-6.doc			FR0100
			4

Figure E2. Conducted RF Immunity Test Setup – AC Mains.

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 10, 2018

PR085361-4-6.doc

_	Test Area:	GP1
_	S/N:	CASTD002
_	Date:	September
-		

FR0100

ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1039	Fluke	83-3	69811227	Multimeter/Frequency Meter	10/24/2017	10/24/2018
1261	Hewlett Packard	8648C	3619U00779	Signal Generator, 100kHz to 3.2GHz	10/24/2017	10/24/2018
1379	IFI	M100	O1200-0111	100W Power Amplifier, 0.01 MHz to 220 MHz	NA	NA
1480	EMCI	EMCI-CDN- M3-16	EMCI015	M3 CDN, 16A, 250 VAC	11/13/2017	11/13/2018
1496	Rigol Technologies, Inc.	DSA815	DSA8B150500 096	9 kHz to 1.5 GHz Spectrum Analyzer	03/26/2018	03/26/2019
1528	Aeroflex/Wein schel	40-6-34	SB031	Hi power atten 6 dB	10/12/2017	10/12/2018
1532	Werlatone	C9475-13	102545	100 Watt Dual Directional Coupler, 10 kHz to 250 M	10/12/2017	10/12/2018
1569	California Instruments by Ametek	5001IX-208- CTS, Series II	1514A02227	5kV Progammable Power Supply	NA	NA
1587	EXTECH Instruments	445715	NA	Hygro-Thermometer	01/25/2018	01/25/2019
1594	EMCI	CI	V2.5.0	Conducted Immunity Software	NA	NA

Test Equipment List

Test Report No. ITR-PR085361

APPENDIX F: Power Frequency H-Field Test Data

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)			_	Project Number:	PR085361
Customer Representative:	Stephen Han				Test Area:	GP1
Model:	ClearCast (Model 2, Version A)				S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG			_	Date:	September 11, 2018
Temperature:	24.0°C	Humidity:	42%	_	Pressure:	835 mb
Input Voltage:	120Vac/60Hz			_		
Configuration of Unit:	Scanning ballots					
Test Engineer:	Casey Lockhart					
R085361-4-8.doc						FR0100

PR085361-4-8.doc

Frequer 50	ncy (Hz) 60	Field Strength (A/m)	EUT Axis Location	Dwell Time (sec)	Comments	Criteria Met	Pass / Fail
Х		30	Х	60		А	Pass
	х	30	Х	60		А	Pass
Х		30	Y	60		А	Pass
	х	30	Y	60		А	Pass
х		30	Z	60		А	Pass
	х	30	Z	60		А	Pass
х		30	Z	60	Extra axis to cover monitor.	А	Pass
	x	30	Z	60	Extra axis to cover monitor.	А	Pass

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 11, 2018
PR085361-4-8.doc			FR0100

Figure F1. Power Frequency H-field Immunity Test Setup X axis.

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 11, 2018
PR085361-4-8.doc			FR0100
Figure	F2. Power Frequency H-field Immunity Te	st Setup Y axis	
Figure	r2. Fower requeitcy n-neid minimumity re	si setup 1 axis	•

56

Customer RepresentativeStephen HanTest AreaGP1ModeiClearCast (Model 2, Version A)SN:CASTD002007Standard Reference:EAC 2005 VVSGDate:September 11, 2018PR085361-4.8.drFR0100	Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Mail ClarCast (Model 2, Version A) S/N CASTD00207 Standard Reference: EAC 2005 VVSG Total September 11, 2018 PR053614-8.dor FR010	Customer Representative:	Stephen Han	Test Area:	GP1
	Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
<text></text>	Standard Referenced:	EAC 2005 VVSG	Date:	September 11, 2018
	PR085361-4-8.doc			FR0100
Figure F3 Power Frequency H-field Immunity Test Setup Z axis	Figure	F3 Power Frequency H-field Immunit	W Test Setup Z axis	

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 11, 2018
PR085361-4-8.doc			FR0100
Figure F	4. Power Frequency H-field Immunity T	Fest Setup extra Z a	xis.

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 11, 2018
.085361-4-8.doc			FR0100

PR085361-4-8.doc

Test Equipment List						
ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1039	Fluke	83-3	69811227	Multimeter/Frequency Meter	10/24/2017	10/24/2018
1371	Tektronix	TDS2002B	C103483	Oscilloscope, 60 MHz, 2-channel	01/26/2018	01/26/2019
1587	EXTECH Instruments	445715	NA	Hygro-Thermometer	01/25/2018	01/25/2019
1505	EMCI	EMCI-4-8-2m- 1.5m	0002	HField Loop, 2m x 1.5m	08/28/2017	09/28/2018
1549	California Instruments/A metek	1251P	1423A05348	AC power supply	NA	NA
1485	Pearson Electronics	110A	90561	Current Monitor, 1 Hz to 20 MHz	11/28/2017	11/28/2018

Test Report No. ITR-PR085361

APPENDIX G: Voltage Dips and Interrupts Test Data

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)			_	Project Number:	PR085361
Customer Representative:	Stephen Han			_	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)			_	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG				Date:	September 10, 2018
Temperature:	23.6°C	Humidity:	32%		Pressure:	836 mb
Input Voltage:	120Vac/60Hz					
Configuration of Unit:	Scanning ballots					
Test Engineer:	Casey Lockhart					
R085361-4-11.doc						FR0100

PR085361-4-11.doc

%	No. of	P	hase A	ngle (de	eg)	Time	Number	Comments	Criteria	Pass /
Nominai	Cycles	0	90	180	270	dropouts	of tests		Met	Fall
						(sec)				
70%	0.6	х				10	3		А	Pass
70%	0.6		х			10	3		А	Pass
70%	0.6			х		10	3		А	Pass
70%	0.6				х	10	3		А	Pass
40%	6	х				10	3		А	Pass
40%	6		х			10	3		А	Pass
40%	6			х		10	3		А	Pass
40%	6				х	10	3		А	Pass
40%	60	х				10	3		А	Pass
40%	60		х			10	3		А	Pass
40%	60			х		10	3		А	Pass
40%	60				Х	10	3		А	Pass
0%	300	х				10	3		А	Pass
0%	300			х		10	3		А	Pass
Line Voltage Variation tests							I			
129Vac Line Voltage Variations (+7.5% of nominal 120V) 3hrs.							А	Pass		
105Vac Line Voltage Variations (-12.5% of nominal 120V) 3 Hrs.						А	Pass			
Surges of -15% line variations of nominal voltage (102V) 1 Hrs							А	Pass		
Surges of -15	Surges of -15% line variations of nominal voltage (138V) 1 Hrs							Α	Pass	

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361		
Customer Representative:	Stephen Han	Test Area:	GP1		
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007		
Standard Referenced:	EAC 2005 VVSG	Date:	September 10, 2018		
PR085361-4-11.doc FR0100					

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 10, 2018
PR085361-4-11.doc			FR0100

PR085361-4-11.doc

Figure G2. Voltage Dips and Interruptions Test Setup.

Manufacturer:	Clear Ballot Group (manufacturer) Pro V&V (client)	Project Number:	PR085361
Customer Representative:	Stephen Han	Test Area:	GP1
Model:	ClearCast (Model 2, Version A)	S/N:	CASTD002007
Standard Referenced:	EAC 2005 VVSG	Date:	September 10, 2018
085361-4-11.doc			FR0100

PR085361-4-11.doc

Test Equipment List

ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1039	Fluke	83-3	69811227	Multimeter/Frequency Meter	10/24/2017	10/24/2018
1184	KeyTek	CEWare	4.0	KeyTek EMCPro Control Software for EFT, Surge, H-F	NA	NA
1284	ThermoFischer Scientific	EMC Pro Plus - USA	0705276	EFT, Surge, H-field & PQF Immunity Test Generator	07/05/2018	07/05/2019
1371	Tektronix	TDS2002B	C103483	Oscilloscope, 60 MHz, 2-channel	01/26/2018	01/26/2019
1569	California Instruments by Ametek	5001IX-208- CTS, Series II	1514A02227	5kV Progammable Power Supply	NA	NA
1587	EXTECH Instruments	445715	NA	Hygro-Thermometer	01/25/2018	01/25/2019

64

Test Report No. ITR-PR085361

APPENDIX H: Product Data Sheet

65

1.0 Client Information

Client Information	
Manufacturer Name	Clear Ballot Group (manufacturer) Pro V&V (client)
Address	700 Boulevard South Suite 102
City	Huntsville
State	AL
Zip Code	35802
Client Representative	Stephen Han
Title	Sr. Project Engineer
Title Phone	Sr. Project Engineer 256-713-1111
Title Phone Fax	Sr. Project Engineer 256-713-1111 256-713-1112
Title Phone Fax Email	Sr. Project Engineer 256-713-1111 256-713-1112 stephen.han@provandv.com

2.0 Product Information - General

Product Information							
Product Name (as it should appear on test report)	ClearCast						
Model Number (of UUT to be tested)	ClearCast						
Functional description of product (what is it, what does i	Precinct Tabulator						
do, etc.)							
List all modes of operation	Normal						
Can modes be operated simultaneously? If so, explain.	No						
What mode(s) will be used for testing?	Normal						
Product type (IT, Medical, Scientific, Industrial, etc.)	IT						
Is the product an intentional radiator	no						
Product Dimensions							
Product Weight							
Will fork lift be required	No						
Applicable Standards, if known	EAC 2005 VVSG Volumes I and II						
Describe all environment(s) where product will be used	Used for voting during elections						
(residential, commercial, industrial, etc.)							
Does product consist of multiple components? (If yes,	No						
please describe each system component)							
Cycle time > 3 seconds? (If yes, how long?)	Yes. 5 sec						
Highest internally generated frequency							
Product Set-up Time	15 minutes						
Boot up time in the event of an unintentional power dow	0 minutes - internal backup battery						
Identify ALL I/O connections on the unit(s) under test, a	s well as MAXIMUM associated cable lengths below						
	I/O Type Longth Patient						
Model No. Description	UUT- UUT (m) Connect? QTY						
	UUT - SE (See Note)						
power							
Note: "Patient Connect" column applies only to medical devices.							

3.0 Power

Power Requirements	
Does/can product connect to AC mains?	Yes.
(If so, can the UUT function when connected to AC?)	
Input Voltage Rating as it appears on unit, power supply,	115 VAC ; 230 VAC
or power brick	
Input Current (specify @ 230 Vac/50 Hz)	Normal
Single or Multi-Phase	single
(If multi-phase, specify delta or wye)	
Is input power connector two-prong (Hot & Neutral) or	3 prong
3-prong (H, N, Ground)	
Does UUT have more than 1 power cord? (If yes,	No
explain.)	

4.0 Unit Under Test (UUT) – Detailed Information

UUT Hardware							
Condition		New					
ConfigurationDuring Test			S				
Input Power		Normal AC por	wer				
UUT Compo	onents						
Name	Ν	Iodel No.	Serial	No.	Description		
ClearCast	Mode	l 2, Version A	Unit	1	Precinct Tabulator		
	-						
I/O Cabling							
See Section 2	.0 for de	etails					
UUT Softwa	re/Firm	ware		1			
Name		Version/Revis	sion		Functionality		
ClearCast		N/A			Voting systems software		
UUT Operat	ing Cor	nditions		1			
List all frequencies generated/used by the			he	n/a			
product.				C	D 11.4		
How will product be exercised during test?			est?	Scannin Missiall			
How will product be monitored during test?			test?				
what are the p	product s	critical parameter	ers?	Unit kee	eps scanning		
Specify tolera	nce of al	I critical paramet	ers.	Unit keeps scanning			

5.0 Support Equipment (SE) – Detailed Information

Support Equipment (SE)								
Name	Model No.	Seria	l No.		Descrip	otion		
n/a								
SE I/O Cabling	SE I/O Cabling							
Model No.		Descr	iption		Shielded?	Length	Quantity	
n/a								
SE Software/F	irmware						-	
Name	Version/F	Revision		F	unctionality			
n/a								

6.0 Block Diagram

Important note: The product data sheet is a critical piece of documentation which is used as the basis for any test reports that NTS will generate; it must be completed *prior* to testing. It should be reviewed carefully by the client. If incorrect information is provided resulting in revisions to test reports, the client will be subject to report revision fees.

Test Report No. ITR-PR085361

APPENDIX I: Test Log

69

EMI\ENV Test Log

Manufacturer:	Pro V&V	Project Number:	PR085361
Model:	Clear Ballot Group (manufacturer) Pro V&V (client)	S/N:	Unit 1
Customer Representative:	Michael Walker		
Standard Referenced:	FCC Part 15, EAC 2005 VVSG		
			FR0105

10m Emissions

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials	
RE	6001	September 6,	Setup for RE		1.0	Complete	KJ	
		2018 0800-0900						
RE	1342	0900-1000	Test#1: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter test distance.		1.0	Fail	KJ	
			120Vac/60Hz					
			FCC Class B					
			Unit failing multiple frequencies					
		1000-1100	Test#2: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter test distance.		1.0	Fail	KJ	
			120Vac/60Hz					
			FCC Class B					
			RE Troubleshooting					
			Ferrite on the HDMI cable and internal power cable.					
	Image: state of the state							

FR0105

EMI\ENV Test Log

Manufacturer:	Pro V&V	Project Number:	PR085361
Model:	Clear Ballot Group (manufacturer) Pro V&V (client)	S/N:	Unit 1
Customer Representative:	Michael Walker		
Standard Referenced:	FCC Part 15, EAC 2005 VVSG		

10m Emissions

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials	
		1100-1200	Test#3: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter test distance.		1.0	Fail	KJ	
			120Vac/60Hz					
			FCC Class B					
			RE Troubleshooting					
			Ferrite on the HDMI cable and internal power cable.					
			Ferrite on 3 USB cables					
	Ferrite on 3 USB cables							

FR0105

EMI\ENV Test Log

Manufacturer:	Pro V&V	Project Number:	PR085361
Model:	Clear Ballot Group (manufacturer) Pro V&V (client)	S/N:	Unit 1
Customer Representative:	Michael Walker		
Standard Referenced:	FCC Part 15, EAC 2005 VVSG		

10m Emissions

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials
RE	1351	1230-1330	Test#4: 1GHz – 18GHz, 16 rads, 2 heights, 3 second dwell, ref level = 107dB, 3 meter test distance.		1.0	Complete	KJ
			120Vac/60Hz				
			FCC Class B				
			Client does not want to measure any signals.				
CE	2341	1330-1430	Test#5: 150KHz – 30MHz		1.0	Pass	KJ
			120Vac/60Hz				
			FCC Class B				
RI	4398	1430-1630	Radiated RF Immunity		2.0	Complete	KJ
			(4.1.2.10)				
			10V/m, 80 - 1000 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell				
			120 VAC / 60 Hz				
			EAC 2005 VVSG				
			Did the back side V-pole				
RI		September 7,	Finishing Radiated RF Immunity		4.0	Pass	KJ
		2018 0800-1200	Unit stopped at 239MHz, V-pole, left side. Did not repeat.				
RE		1230-1300	Test#6: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter test distance.		0.5	Fail	KJ
			120Vac/60Hz				
			Cable re-positioning, cable management and ferrites				
			Unit failed at 668MHz by .5dB				
RE		1330-1430	Test#7: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter test distance.		1.0	Pass	KJ
			120Vac/60Hz				
			HDMI cable shielded with foil with ferrites				
			Output power cable shielded				

FR0105

EMI\ENV Test Log

Manufacturer:	Pro V&V	Project Number:	PR085361
Model:	Clear Ballot Group (manufacturer) Pro V&V (client)	S/N:	Unit 1
Customer Representative:	Michael Walker		
Standard Referenced:	FCC Part 15, EAC 2005 VVSG		

10m Emissions

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials
			NOTE: Client says that they do not need to finish 1GHz to 18GHz Radiated emissions.				
			Regular ho	urs:	13.5		

13.5

Ground Planes / CALC

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials
4-6	4622	September 10,	Conducted RF Immunity		1.0	Pass	CL
		2018	(4.1.2.11)				
		0800 - 0900	10Vrms, 0.15 - 80 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell				
			120 VAC / 60 Hz				
4-4	4411	0900 - 0930	Electrical Fast Transient / Burst		0.5	Pass	CL
			(4.1.2.6)				
			Mains: +/- 2kV, I/O: +/- 1kV				
			120 VAC / 60 Hz @ 100kHz rep rate. Also ran at 5kHz rep rate.				
4-11	4196	0930 - 1000	Voltage Dips and Interruptions		0.5	Pass	CL
			(Inc./Red. of Nom. Voltage) (4.1.2.5)				
			Electric power increases of 7.5% and reductions of 12.5% of nominal specified power. (See Protocol) 120 VAC / 60 Hz				
		1000 - 1300	129Vac Line Voltage Variations (+7.5% of nominal 120V)		3.0	Pass	CI
		1000 - 1500	3hrs.		5.0	1 435	CL
		1300 - 1600	105Vac Line Voltage Variations (-12.5% of nominal 120V) 3 Hrs.		3.0	Pass	CL
		September 11, 2018	Surges of -15% line variations of nominal voltage (102V) 1 Hrs		1.0	Pass	CL
		08009000					
		0900 - 1000	Surges of + 15% of line variations of nominal (138Vac) 1 Hrs.		1.0	Pass	CL
4-5	4596	1000 - 1530	Surge Immunity		5.5		CL
			(4.1.2.7)				
			Mains: +/- 2kV CM, +/- 2kV DM, (0, 90, 180, 270)				
			120 VAC / 60 Hz Note: Post-test verification found				
			touch screen not responding. Will replace screen and re-test tomorrow.				
4-8	4831	1530 - 1630	Power Frequency H-Field Immunity		1.0	Pass	CL
			(4.1.2.12)				
			30A/m, 50 / 60 Hz, 3 axes				
			120 VAC / 60 Hz				
4-5		September 12, 2018	Re-test Surge Immunity (4.1.2.7)		5.0	Pass	CL
		0800 - 1300	Mains: +/- 2kV CM, +/- 2kV DM, (0, 90, 180, 270)				
			120 VAC / 60 Hz				
4-2	4254	1300 - 1500	Electrostatic Discharge Note: Pre-test performed, cables are .931 and .947		2.0	Pass	CL
			(4.1.2.8)				
			+/- 8kV Contact, +/-2, 4, 8, 15kV Air				
			120 VAC / 60 Hz				

Regular hours:

Overtime/Prem hours:

Total hours: 23.5

23.5

Project #	PR085361 Work Order	#: 2018080601	PO#:
B80857			7 milount.
Company:	Pro V&V Contact:	Michael Walker	Model#:
	700 Boulevard South	Email:	Serial #:
	Suite 102	michael.walker@provandv.com	
	Huntsville, AL 35802		
	Phone: 256-713-11111		
	Fax:		
Test Notes:	Voting Machine Testing		
	Three (5) units for test		
	PQF: Increase/decrease = 3 hrs each	-/+, 6 hrs total per unit	
	PQF: Surge = 4 hrs each		
	Data sheet folder for each unit		
	Formal test reports		

	Quoted Work				
Date	Test Code	Description	Standard	Result	Billed
September 6, 2018	1342	Radiated Emissions, 30 MHz - 1 GHz (4.1.2.9) 30 MHz - 1 GHz 120 VAC / 60 Hz	FCC Part 15, Class B	Pass	
September 6, 2018	1351	Radiated Emissions, 1 GHz - 18 GHz (4.1.2.9) 1 GHz - 18 GHz 120 VAC / 60 Hz	FCC Part 15, Class B	Fail	
September 6, 2018	2341	Conducted Emissions, 150 kHz - 30 MHz (4.1.2.9) 120 VAC / 60 Hz	FCC Part 15, Class B	Pass	
September 12, 2018	4254	Electrostatic Discharge (4.1.2.8) +/- 8kV Contact, +/-2, 4, 8, 15kV Air 120 VAC / 60 Hz	EN61000-4-2	Pass	
September 6, 2018	4398	Radiated RF Immunity (4.1.2.10) 10V/m, 80 - 1000 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell 120 VAC / 60 Hz		Pass	
September 10, 2018	4411	Electrical Fast Transient / Burst (4.1.2.6) Mains: +/- 2kV, I/O: +/- 1kV 120 VAC / 60 Hz	EN61000-4-4	Pass	
September 11, 2018	4596	Surge Immunity (4.1.2.7) Mains: +/- 2kV CM, +/- 2kV DM, (0, 90, 180, 270) 120 VAC / 60 Hz	EN61000-4-5	Pass	

September 10,	4622	Conducted RF Immunity	EN61000-4-6	Pass	
2018		(4.1.2.11)			
		10Vrms, 0.15 - 80 MHz, 1% Step, 80% AM, 1kHz			
		sine, 3s dwell			
		120 VAC / 60 Hz			
September 11,	4831	Power Frequency H-Field Immunity	EN61000-4-8	Pass	
2018		(4.1.2.12)			
		30A/m, 50 / 60 Hz, 3 axes			
		120 VAC / 60 Hz			
September 10,	4196	Voltage Dips and Interruptions	EN61000-4-11	Pass	
2018		(Inc./Red. of Nom. Voltage) (4.1.2.5)			
		Electric power increases of 7.5% and reductions of			
		12.5% of nominal specified power. (See Protocol)			
		120 VAC / 60 Hz			
September 11,	4194	Voltage Dips and Interruptions	EN61000-4-11	Pass	
2018		(Surge of +/- 15%) (4.1.2.5)			
		Surge of +/- 15% line variation of nominal line			
		voltage			
		120 VAC / 60 Hz			
September 10,	4193	Voltage Dips and Interruptions	EN61000-4-11	Pass	
2018		(4.1.2.5)			
		70% nom, 0.6 cycles / 40% nom, 6 cycles & 1 sec. /			
		0% nom, 300 cycles			
		120 VAC / 60 Hz			
September 6,	6001	Initial Product Set-up & Configuration			
2018		Engineering / Trouble-Shoot			
	9010	Immunity Test Report - Soft Copy			
	9040	Emissions Test Report - Soft Copy			

Unquoted Work					
Date	Test Code	Description	Cost	Billed	

Modifications Required For Compliance			
Test	Description of Modification	Client Initials	
RE	(1) 742 717 22 Wurth ferrite		
	(1) 742 711 42 Wurth ferrite		
	(1) 742 711 32 Wurth ferrite		
	(2) 742 758 13 Wurth ferrites		
	(2) 742 758 12 Wurth ferrites		
	Shielded HDMI and output power cable		
	See photo in test log. Red arrows for ferrites and blue arrows for shielded cable		

Modifications Required For Compliance				
Test	Description of Modification	Client Initials		
Shipping Instructions		Client Initials		
Supervisor	: Date:			
Test Engineer	Date:			
I, the client, ve was accurate. Protocol, infor	erify that all the information provided concerning the unit which was tested, support equip This includes, but is not limited to, information provided via EMC Test Plan and/or mation provided to complete NTS's Product Data Sheet, etc.	oment, etc., EMC Test		
Furthermore, I from inaccurat	understand that my company may be assessed report revision fees for any report revisior e or incomplete information provided.	ns resulting		
Client	Date:			

Invoice Complete Invoice #:

Test Report No. ITR-PR085361

APPENDIX J: Laboratory Accreditations

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

NATIONAL TECHNICAL SYSTEMS (NTS) - LONGMONT 1736 Vista View Drive Longmont, CO 80504-5242 Mr. Eric Loucks Phone: 303 776 7249

ELECTRICAL

Valid To: September 30, 2018

Certificate Number: 0214.43

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following <u>Electromagnetic Compatibility/Interference (EMC/EMI)</u>, <u>Lightning, Transient, Surge, and Product Safety tests</u>:

Test Technology:	Test Method(s) ^{1,2} :
Emissions Radiated and Conducted	CFR 47 FCC, Parts 15B (using ANSI C63.4: 2014), 15C (using ANSI C63.10:2013), and 18 (using MP-5:1986); CISPR 32, Ed. 1 (2012-01); EN 55032:2012/AC:2013; AS/NZS CISPR 22 (2002); AS/NZS 3548 (1997); AS/NZS CISPR 14-1 (2003); IEC/CISPR 14-1, Ed. 4 (2003); IEC 61000-3-12, Ed. 2.0 (2011); EN 61000-3-12 (2011); IEC 61000-6-1, Ed. 2 (2005-03); IEC 61000-6-2, Ed. 2.0 (2005-01); IEC 61000-6-3 (1996); EN 61000-6-3 (2001) + A1 (2004); EN 61000-6-4 (2007); KN 32:2015 (Annex 11); KN 22; KN 11
Harmonics	IEC 61000-3-2, Ed. 2.2 (2004-11); IEC 61000-3-2, Ed. 3.0 (2005) + A1 (2008) + A2 (2009); IEC 61000-3-2, Ed. 4.0 (2014-05)
Flicker	IEC 61000-3-3, Ed. 1.1 (2002-03); EN 61000-3-3 + Al (2001); IEC 61000-3-3, Ed. 1.1 (2003) + A2 (2005); IEC 61000-3-3, Ed. 3.0 (2013-05)
Immunity Electrostatic Discharge (ESD)	IEC 61000-4-2 (2001); EN 61000-4-2 (2001) + A2 (2001); EN 61000-4-2 + A1 (1998) + A2 (2001); IEC 61000-4-2, Ed. 2.0 (2008-12); EN 61000-4-2 (2009-05); KN 61000-4-2; KN 61000-4-2 (2008-5); KN 61000-4-2 (Annex 1-1)
Radiated	IEC/EN 61000-4-3, Ed. 2.1 (2002) + A1 (2002); EN 61000-4-3; IEC 61000-4-3 (1995) + A1 (1998) + A2 (2000); EN 61000-4-3 (2002) + A1 (2002); IEC 61000-4-3, Ed. 3.0 (2006-02) + A1 (2007) + A2 (2010); EN 61000-4-3 (2006) + A1 (2008) + A2 (2010); KN 61000-4-3; KN 61000-4-3 (2008-5); KN 61000-4-3 (Annex 1-2)

(A2LA Cert. No. 0214.43) Revised 08/30/2018

Page 1 of 4

.5202 Presidents Court, Suite 220 | Frederick, MD 21703-8398 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

Test Technology:	Test Method(s) ^{1,2} :
Immunity (cont'd) Electrical Fast Transient/Burst	IEC 61000-4-4, Ed. 2.0 (2004-07); EN 61000-4-4 (2004); EN 61000-4-4:2012; IEC 61000-4-4 (2012-04); KN 61000-4-4; KN 61000-4-4 (2008-5); KN 61000-4-4 (Annex 1-3)
Surge	IEC 61000-4-5, Ed. 2.0 (2005-11); EN 61000-4-5; IEC 61000-4-5, Ed. 3.0 (May 2014); BS EN 61000-4-5 (2006); EN 61000-4-5: 2014; KN 61000-4-5; KN 61000-4-5 (2008-5); KN 61000-4-5 (Annex 1-4); IEEE C62.41.1 (2002); IEEE C62.41.2 (2002); IEEE C62.25 (2002)
Conducted	IEC 61000-4-6, Ed. 2.1 (2004); EN 61000-4-6; EN 61000-4-6 (1996) + A1 (2001); IEC 61000-4-6, Ed. 2.2 (2006-05); IEC 61000-4-6, Ed. 3.0 (2008); IEC 61000-4-6, Ed. 4.0 (2013); EN 61000-4-6 (2009); EN 61000-4-6 (2014); KN 61000-4-6; KN 61000-4-6 (2008-5); KN 61000-4-6 (Annex 1-5)
Power Frequency Magnetic Field	IEC 61000-4-8 (2001) + A1 (2000); EN 61000-4-8 (2001) + A1 (2000); EN 61000-4-8 (1993) + A1 (2001); IEC 61000-4-8 (2009); EN 61000-4-8:2010; KN 61000-4-8; KN 61000-4-8 (2008-5); KN 61000-4-8 (Annex 1-6)
Voltage Dips, Short Interruptions, and Voltage Variations	IEC 61000-4-11, Ed. 2 (2004-03); EN 61000-4-11; EN 61000-4-11 (1994) + Al (2001); EN 61000-4-11 (2004); KN 61000-4-11; KN 61000-4-11 (2008-5); KN 61000-4-11 (Annex 1-7)
Product Safety Medical Electrical Equipment	IEC 60601-1-2, Ed. 3.0 (2007); KN 60601-1-2 (2008-5); IEC 60601-1-2, Ed. 4, (2014-02); EN 60601-1-2 (2007); EN 60601-1-2 (2015)
Generic/Product Family Standards and Industry Standards Generic Standards	EN 61326-1: 2013; KN 35: 2015
Information Technology Equipment	IEC/CISPR 22 (1997); EN 55022 (1998) + A1 (2000); IEC/CISPR 22 (1993); EN 55022 (1994); IEC/CISPR 22 (1993); EN 55022 (1994) + A1 (1995) + A2 (1997); CNS 13438 (1997); IEC/CISPR 22, Ed. 4 (2003-04); EN 55022 (1998); IEC/CISPR 22, Ed. 5 (2005); EN 55022 (1998); IEC/CISPR 22, Ed. 5 (2005) + A1 (2005); EN 55022 (1998) + A1 (2000) + A2 (2003);

(A2LA Cert. No. 0214.43) Revised 08/30/2018

Page 2 of 4

- - -

Test Technology:	lest Method(s) ⁺⁺ :
Generic/Product Family Standards and Industry Standards (cont'd)	
Information Technology Equipment (cont'd)	CNS 13438 (2006) (up to 6GHz); IEC/CISPR 22, Edition 5.2 (2006-03); EN 55022 (2006); EN 55022 (2006) + A1 (2007); EN 55022:2010; IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2009); TCVN 7189:2009 (CISPR 22:2006); VCCI V-3 (2009.04, 2011.04, 2013.04, 2014.04, 2015.04) (up to 6 GHz); VCCI-CISPR 32:2016; CISPR 24 Ed 2.0 (2010-08); EN 55024 (2010); KN 24
Industrial, Scientific, and Medical (ISM) Equipment	AS/NZS CISPR 11 (2002); IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004); IEC/CISPR 11, Ed. 4.1 (2004-06) + A1 (2004); EN 55011 (1998) + A1 (1999) + A2 (2002); IEC/CISPR 11 (2003); EN 55011 (1998) + A2(2002); EN 55011 (2009) + A1 (2010); IEC/CISPR 11 Ed. 5 (2009-05); CISPR 11 Ed. 5.1 (2010)
Measure	IEC 61326-1 Ed. 2.0 (2012)
Military/Defense	 MIL-STD-461F Method CE101 (30 Hz to 10 kHz); MIL-STD-461F Method CE102 (10 kHz to 10 MHz); MIL-STD-461F Method CE106 (10 kHz to 40 GHz); MIL-STD-461F Method CS101 (30 Hz to 150 kHz); MIL-STD-461F Method CS106; MIL-STD-461F Method CS114 (10 kHz to 200 MHz); MIL-STD-461F Method CS116 (10 kHz to 100 MHz); MIL-STD-461F Method RE101 (30 Hz to 100 kHz); MIL-STD-461F Method RE102 (10 kHz to 18 GHz); MIL-STD-461F Method RE103 (10 kHz to 40 GHz); MIL-STD-461F Method RS101 (30 Hz to 100 kHz); MIL-STD-461F Method RS101 (30 Hz to 40 GHz);

¹ When the date, revision or edition of a test method standard is not identified on the scope of accreditation, the laboratory is required to be using the current version within one year of the date of publication, per part C., Section 1 of A2LA *R101* - *General Requirements- Accreditation of ISO-IEC 17025 Laboratories.* If a specifier/regulator imposes a different transition period, this will supersede the A2LA one-year implementation period.

² The laboratory is only accredited for testing activities outlined within the test methods listed above. Reference to any other activity within these standards, such as risk management or risk assessment, does not fall within the laboratory's accredited capabilities.

On the following types of products:

Telecommunication Equipment, Network Equipment, Industrial and Commercial Equipment, Electronic (Digital) Equipment, Medical, Aerospace, Military. Information Technology Equipment, Multimedia Equipment, Scientific Equipment

(A2LA Cert. No. 0214.43) Revised 08/30/2018

Page 3 of 4

Testing Activities Performed in Support of FCC Declaration of Conformity and Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1³

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Unintentional Radiators</u> Part 15B	ANSI C63.4:2014	40000
<u>Industrial, Scientific, and Medical Equipment</u> Part 18	FCC MP-5 (February 1986)	40000
<u>Intentional Radiators</u> Part 15C	ANSI C63.10:2013	40000

³Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (https://apps.fcc.gov/oetcf/eas/) for a listing of FCC approved laboratories.

Page 4 of 4

(A2LA Cert. No. 0214.43) Revised 08/30/2018

Accredited Laboratory

A2LA has accredited

NATIONAL TECHNICAL SYSTEMS (NTS) - LONGMONT

Longmont, CO

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 28th day of October 2016.

President and CEO For the Accreditation Council Certificate Number 0214.43 Valid to September 30, 2018 Revised August 30, 2018

For the fests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Test Report No. ITR-PR085361

END OF REPORT