
Source Code Review Summary

Process
Source code review was performed on the Hart Verity 2.7 source code. Verity 2.7

was reviewed as a modification of the Verity 2.6 system. Review was performed in two
parts, Automated and Manual. Automated review was performed using the Understand
tool to produce results that were reviewed as part of the Manual review. Manual review
was performed to validate all findings from the Understand tool, as well as to cover all
requirements that Understand is not capable of covering. For the manual review only
modified code was reviewed. Unmodified code that has already been approved is
considered compliant and does not require review.

Standards

Source code review utilizes the VVSG 1.0 along with all vendor declared
standards that meet the requirements from the VVSG Vol 1 5.2.6. For this review, Hart
identified the following coding standard that was used during the creation of their
product:

• Microsoft All-in-One Code Framework Coding Standards
The above listed coding standards, meets the requirements from the VVSG Vol 1 5.2.6
that allow for the vendor declared standard to supersede portions of the VVSG.

Code Count

The source code for the Verity 2.7 review effort, contains the component(s) listed
in the table below which shows the languages used for each component along with a
line count of each and the associated standard used for review.:

Software
Component

Language(s) Line Count(s) Standard(s)

Verity 2.7 C#, and C++ 1,598,143 Microsoft All-in-One
Code Framework
Coding Standards

Automated Review

The listed code was first scanned using the Understand tool for the following
requirements. The following table contains the full set of results for the checks used and
a count of all issues returned by the Understand tool. Only requirements that had at
least one issue returned are listed. For the full set of checks run, see the project specific
configuration file named Verity 2.6_CodecheckConfiguration.ini.
Understand CodeCheck Number of Findings
MISRA-C++ 2008 17-0-1 Reserved
identifiers, macros and functions in the
standard library shall not be defined,
redefined or undefined

29

MISRA-C++ 2008 6-6-5 A function shall
have a single point of exit at the end of
the function

21

MISRA-C++ 2008 7-1-1 A variable which
is not modified shall be const qualified

208

SciTools' Recommended Checks
Functions Too Long -
RECOMMENDED_04 -- Program units
should not have more than the specified
number of lines

45

SciTools' Recommended Checks Magic
Numbers - RECOMMENDED_08 -- All
fixed values will be defined constants.

523

SciTools' Recommended Checks
Unreachable Code -
RECOMMENDED_12 -- Source will not
contain Unreachable Code

9

All findings returned by the Understand tool were reviewed using manual review to
validate accuracy.

Manual Review

Manual review was performed over the modified source code to verify
compliance with the VVSG and applicable Vendor Declared Standards. All findings
returned by the Understand tool, as well as any requirements not able to be covered by
Understand, were reviewed during this process. The following table lists all
requirements covered during the manual review and the number of findings found to be
in violation.
VVSG/Vendor Standard Requirement Number of Findings
VVSG v.1: 5.2.2
Self-modifying code

0

VVSG v.1: 5.2.3.a
Specific function

0

VVSG v.1: 5.2.3.b
Module has unique name

0

Hart Verity Coding Std sec.: 3.2
Hart Naming Conventions

0

VVSG v.1: 5.2.3.b, 5.2.7.a
Module has header

0

VVSG v.1: 5.2.3.c
Required resources

0

VVSG v.1: 5.2.3.e
Single Entry Point

0

VVSG v.1: 5.2.3.e
Single Exit Point

0

VVSG v.1: 5.2.3.f
Control structures

0

MS Std sec.: 2.2
Do not use tabs

0

Verity Std sec.: 2.1
Line length

0

MS Std sec.: 2.6
Local variables have minimum scope

0

MS Std sec.: 2.6
Local variable declaration and
initialization

0

Verity Std sec.: 3.8.4
Initialize pointer variables

0

MS Std sec.: 2.6
Parameters ordered in groups

0

MS Std sec.: 2.7
One statement per line

0

MS Std sec.: 2.8
Use enums

0

MS Std sec.: 2.8.1
Flag enums

0

MS Std sec.: 2.10
Braces and indentation

0

Verity Std sec.: 3.7.3
Braces around single line conditionals

0

MS Std sec.: 2.11.2
File has header comments

0

MS Std sec.: 2.11.6
TODO comments

0

MS Std sec.: 4.2
File named for single contained public
type

0

MS Std sec.: 4.4.1
Meaningful names

0

MS Std sec.: 4.4.3
No Hungarian notation

0

MS Std sec.: 4.5
Constant fields

0

MS Std sec.: 4.6
String operations

0

MS Std sec.: 4.7
Array and Collection operations

0

MS Std sec.: 4.8
Value types implement IEquatable<T>

0

MS Std sec.: 4.9.1
Class instance fields are private and
exposed through properties

0

MS Std sec.: 4.9.2
Set-only properties are not allowed

0

MS Std sec.: 4.9.3 0

Do not call virtual members on an object
inside its constructors
MS Std sec.: 4.9.4
Out parameters follow all of the pass-by-
value and ref parameters

0

MS Std sec.: 4.9.4
Validate arguments to public, protected,
or explicit members

0

MS Std sec.: 4.9.6
Member overloading

0

MS Std sec.: 4.9.10
Abstract types' constructors

0

MS Std sec.: 4.11.1
Throw specific exceptions. Do not return
error codes.

0

MS Std sec.: 4.11.2
Catch only specific errors

0

MS Std sec.: 4.12
Do not force garbage collections

0

MS Std sec.: 4.12.1
Do not use catch blocks for cleanup code.

0

MS Std sec.: 4.12.2
Basic Dispose Pattern

0

MS Std sec.: 4.12.3
Types finalizable

0

Results

For this review, the following table lists each requirement covered during both the
Automated and Manual review process, that had a discrepancy cited against it. After
manual review, any instance of noncompliance with one of the applicable standards or
VVSG requirements, is documented as a Discrepancy and added to the report. All
reports are sent to the Vendor and any discrepancy present in the report must be
addressed before the code is accepted as compliant.
Standard Requirement #

Findings

Discrepancies

Comment

MISRA-C++ 2008 17-
0-1

Reserved
identifiers,
macros and
functions in the
standard
library shall not
be defined,
redefined or
undefined

29 0 Code in
question is
used
appropriately
to qualify data
before use.

MISRA-C++ 2008 6-
6-5

A function shall
have a single
point of exit at
the end of the
function

21 0 C languages
automatically
exit at the
closing brace.

MISRA-C++ 2008 7-
1-1

A variable
which is not
modified shall
be const
qualified

208 0 Variables in
question are
function input
variables.

SciTools'
Recommended
Checks Functions
Too Long -
RECOMMENDED_04

Program units
should not
have more
than the
specified
number of lines

45 0 Line Count
Requirement
does not
include
comment/blank
lines.

SciTools'
Recommended
Checks Magic
Numbers -
RECOMMENDED_08

All fixed values
will be defined
constants.

523 0 Variable
initialization or
assignment is
not a violation.

SciTools'
Recommended
Checks Unreachable
Code -
RECOMMENDED_12

Source will not
contain
Unreachable
Code

9 0 Unreachable
code found to
be defensive,
which is
allowed.

Summary

For this review, there were a total of 835 findings. Of these, none were found to
be in violation of at least one requirement. As a result, no issues were reported and zero
remain open. As no discrepancies were found in the Verity 2.7 source code, no
remediation is required.

