

Test Report of

Radiated and Conducted Emissions Testing Performed on the ClearAccess and ClearCast

Issue Date: 08 August 2019

Prepared for: **Pro V&V, Inc.**

700 Boulevard South Huntsville, AL 35802

Prepared by: National Technical Systems

NTS Longmont

1736 Vista View Drive

Longmont, Colorado 80504

This report and the information contained herein represents the results of testing of only those articles/products identified in this document and selected by the client. The tests were performed to specifications and/or procedures approved by the client. National Technical Systems ("NTS") makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it present any statement whatsoever as to the merchantability or fitness of the test article or similar products for a particular purpose. This document shall not be reproduced except in full without written approval from NTS.

SIGNATURES

Prepared by:		Date:	08 August 2019
	Technical Writer, Greg Gagne		
	OI		
	John Water		
		_	
Reviewed by:	/	Date:	08 August 2019
	Technical Reviewer, John Tate		

REVISIONS

Revision	Reason for Revision	Date
NR	Initial Release	08 August 2019

Table of Contents

G, O, C	1.0	ADMINISTRATIVE DATA	. 6
	1.1	PURPOSE OF TESTS	. 6
	1.2	DESCRIPTION OF TEST ITEM	. 6
	1.3	MANUFACTURER	. 6
	1.4	REFERENCE DOCUMENTS	. 6
	1.5	QUANTITY OF ITEMS TESTED	. 6
	1.6	SECURITY CLASSIFICATION	. 7
	1.7	TESTS CONDUCTED BY	. 7
	1.8	DISPOSITION OF TEST ITEMS	. 7
	1.9	TEST ENVIRONMENT	. 7
	1.9.1	RADIATED EMISSIONS TEST SITE	. 7
	1.9.2	CONDUCTED EMISSIONS TEST SITE	. 8
	1.9.3	MEASUREMENT UNCERTAINTY	. 8
	1.10	TEST APPARATUS	. 9
	1.11	SOURCE INSPECTION	. 9
	1.12	PURCHASE ORDER NUMBER	. 9
	2.0	TEST RESULTS SUMMARY	10
	3.0	RADIATED EMISSIONS TEST	11
	3.1	REFERENCES	11
	3.2	SERIAL NUMBERS	11
	3.3	TEST PROCEDURE	11
	3.4	SPECIAL CONFIGURATIONS	11
	3.5	TEST RESULTS	11
	4.0	CONDUCTED EMISSIONS TEST	12
	4.1	REFERENCES	12
	4.2	SERIAL NUMBERS	12

4.3	TEST PROCEDURE	. 12
4.4	SPECIAL CONFIGURATIONS	. 12
4.5	TEST RESULTS	. 12
APPE	NDIX A: RADIATED EMISSIONS TEST DATA	. 13
APPE	ENDIX B: CONDUCTED EMISSIONS TEST DATA	. 28
APPE	NDIX C: PRODUCT DATA SHEET	. 47
APPE	NDIX D: TEST LOG	. 54
APPE	NDIX E: LABORATORY ACCREDITATIONS	. 61
END	OF REPORT	. 67

1.0 ADMINISTRATIVE DATA

1.1 PURPOSE OF TESTS

This report documents the test efforts performed on the ClearAccess/ClearCast to verify compliance to the Class B limits of CFR Title 47, FCC Part 15 and ICES-003. FCC Part 15 is the U.S. document which governs electromagnetic emissions from computing devices for conducted and radiated emissions, respectively. This was a formal qualification test and was conducted from 15-24 July 2019.

The emission limits applied to the product tested are defined in CFR Title 47. The UUT was set up as specified in CISPR 16.

The normative references of this standard define the test methods used for the emissions testing. These standards are contained in Table 1-1.

Table 1-1: Standards Table

CFR Title 47 FCC Part 15	ICES-003, Issue 6, 2016
ANSI C63.4: 2014	EAC 2005 VVSG Volumes I and II

1.2 <u>DESCRIPTION OF TEST ITEM</u>

The UUT is a ballot marking device (Configuration 1)/precinct tabulator (Configuration 2) designed for use in "voting during elections" environments.

1.3 MANUFACTURER

Clear Ballot Group 700 Boulevard South, Suite 102 Huntsville, AL 35802

1.4 REFERENCE DOCUMENTS

- Quotation Number OP0521624 1
- 2. ISO 17025:2005

1.5 QUANTITY OF ITEMS TESTED

Quantity	Test Item Description	Part/Model Numbers	Serial Numbers
1	ClearAccess	ELO E(AIO Desktop),	A17C002919,
		B432(Oki printer),	AK76022990A0,
		PY3JN2000184	PY3JN2000184
		(CyberPower UPS)	
1	ClearCast	Model D	041902577

1.6 SECURITY CLASSIFICATION

Unclassified

1.7 TESTS CONDUCTED BY

National Technical Systems NTS Longmont 1736 Vista View Drive Longmont, Colorado 80504

1.8 DISPOSITION OF TEST ITEMS

Returned to:

Pro V&V, Inc. 700 Boulevard South Huntsville, AL 35802

1.9 TEST ENVIRONMENT

1.9.1 Radiated Emissions Test Site

Radiated emissions testing was performed at a distance of 10-meters in a semi-anechoic 10-meter chamber. This chamber is calibrated annually and meets the volumetric site attenuation requirements of CISPR 16 at a distance of 10 meters. For measurements from 30 MHz to 1 GHz, a biconilog antenna is used in conjunction with a high-gain, low-noise preamplifier. This is connected to a spectrum analyzer with a Quasi-Peak (QP) Adapter, via an RF Preselector.

Radiated emissions testing is broken into two parts: pre-scan and QP/maximization. Pre-scanning a product from 30 MHz to 1 GHz consists of measuring peak emissions from eight radials (every 45 degrees), at four antenna heights (1 m, 2 m, 3 m and 4 m) for both antenna polarities. Data is recorded in a graph showing amplitude vs. frequency of the emissions, and frequencies for QP/maximization are chosen based on this graph. The procedure for maximizing emissions is as follows:

- 1. The analyzer is tuned to the frequency associated with the emissions having the least margin.
- 2. The turntable and antenna mast are moved to the location where the maximum emission was measured during the pre-scan.
- 3. Both are then oriented such that the maximum emission is obtained.
- 4. Cables on the UUT are manually manipulated to achieve the maximum emission.
- 5. The turntable and antenna mast are then re-adjusted to ensure a

- maximum reading.
- 6. If the signal in question is less than 1 GHz, quasi-peak detection is performed on the signal for a minimum of 10 seconds. For signals greater than 1 GHz, video averaging is performed.
- 7. Turntable/antenna mast maximization and QP detection are performed on all other signals within 6 dB of the limit. In the event that there are not six signals within 6 dB of the limit, the highest six signals are maximized. This ensures that a minimum of six signals are maximized and appear in the final data table.

In the event that emission measurements are required above 1 GHz, the antenna is changed to a double-ridged horn equipped with a preamplifier and run directly into the spectrum analyzer. The QP adapter and RF preselector are not used above 1 GHz.

Pre-scanning a product from 1-18 GHz is performed similarly, except that 16 radials (every 22.5 degrees) and three antenna heights (1 m, 1.5 m and 2 m) are used. A similar maximization process is used as for the lower frequency range, except that average measurements are performed, rather than QP measurements.

1.9.2 Conducted Emissions Test Site

Conducted emissions testing was performed on a 10' by 10' ground plane, which is bonded to the wall of the 10-meter chamber, using its wall as the vertical coupling plane. Line impedance stabilization networks (LISNs) was inserted in series with both the UUT and the support equipment. The LISNs used were standard 50 $\Omega/50~\mu H$ LISNs which complied with the requirements of CISPR 16. These LISNs are calibrated annually for both complex impedance and insertion loss. Measurement equipment used was a spectrum analyzer with a QP adapter. In addition, a transient limiter and a high-pass filter are used to protect the front-end of the receiver from transients and low-frequency noise, respectively.

1.9.3 Measurement Uncertainty

The measurement uncertainty for NTS's emissions test facility complies with the requirements defined in CISPR 16. The complete calculations of NTS's measurement uncertainty are contained in an NTS memo, which is available upon request. However, a summary of NTS's measurement uncertainty is given in Table 1-2.

Table 1-2: Measurement Uncertainty

Test	Requirement	Actual
Conducted Emissions	3.60 dB	3.04 dB
Radiated Emissions – Horizontal Polarity	5.20 dB	4.67 dB
Radiated Emissions – Vertical Polarity	5.20 dB	5.01 dB

1.10 TEST APPARATUS

The instrumentation used in the performance of these tests is periodically calibrated and standardized within manufacturer's rated accuracies and are traceable to the National Institute of Standards and Technology. The calibration procedures and practices are in accordance with ISO 17025:2005. Certification of calibration is on file subject to inspection by authorized personnel.

1.11 SOURCE INSPECTION

NTS QA

1.12 PURCHASE ORDER NUMBER

2019-011

2.0 <u>TEST RESULTS SUMMARY</u>

Table 2-1: Summary of Test Results

Test	Specification	Test Dates	Results
Radiated Emissions	CFR Title 47, FCC Part 15	15-24 July 2019	Complies
Conducted Emissions	CFR Title 47, FCC Part 15	16-24 July 2019	Complies

3.0 RADIATED EMISSIONS TEST

3.1 REFERENCES

CFR Title 47, FCC Part 15

3.2 SERIAL NUMBERS

Table 3-1: Serial Numbers

A17C002919,	
AK76022990A0,	
PY3JN2000184	
041902577	

3.3 TEST PROCEDURE

The UUT was set up for Radiated Emissions Testing in accordance with CFR Title 47, FCC Parts 15 and tested to Class B limits specified in CFR Title 47, FCC Parts 15.107 and 15.109. The UUT was set up as specified in ANSI C63.4: 2014.

Radiated electric field emissions were measured on the UUT over the frequency range from 30 MHz to 1 GHz. The UUT was powered by 120 VAC/60 Hz, configured in its "printing ballots" mode, and exercised continually during testing. Cables were oriented such that the maximum emission was achieved and quasipeak detection was performed on all signals (minimum of six) used in the final data table.

3.4 SPECIAL CONFIGURATIONS

N/A

3.5 TEST RESULTS

Radiated Emissions Test Data is presented in Appendix A.

Configuration	Test Input Voltage	Test Result	Margin dB	Frequency MHz
1	120 VAC / 60 Hz	Complies	0.73	666.676
2	120 VAC / 60 Hz	Complies	3.88	231.729

4.0 CONDUCTED EMISSIONS TEST

4.1 <u>REFERENCES</u>

CFR Title 47, FCC Part 15

4.2 SERIAL NUMBERS

Table 4-1: Serial Numbers

A17C002919,
AK76022990A0,
PY3JN2000184
041902577

4.3 <u>TEST PROCEDURE</u>

The UUT was set up for Radiated Emissions Testing in accordance with CFR Title 47, FCC Parts 15 and tested to Class B limits specified in CFR Title 47, FCC Parts 15.107 and 15.109. The UUT was set up as specified in ANSI C63.4: 2014.

Conducted emissions were measured on the AC power input of the UUT over the frequency range from 150 kHz to 30 MHz. With the UUT configured in its "printing ballots" mode, testing was performed with UUT powered from 120 VAC/60 Hz. The input power to the UUT was run through a standard 50 $\Omega/50~\mu H$ line impedance stabilization network (LISN) which complied with the requirements of CISPR 16. Emissions were compared to both quasi-peak (QP) and average limits, with QP detection and averaging performed on the six highest signals.

4.4 SPECIAL CONFIGURATIONS

N/A

4.5 <u>TEST RESULTS</u>

Conducted Emissions Test Data is presented in Appendix B.

Configuration	Test Input Voltage	Test Result	Margin dB	Frequency MHz
1	120 VAC / 60 Hz	Complies	8.03	15.663
2	120 VAC / 60 Hz	Complies	8.59	0.584

APPENDIX A: Radiated Emissions Test Data

Date:

PR100763

July 15, 2019

Configuration 1:

Radiated Emissions, FCC Part 15

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number:

(client)

Customer Representative: Stephen Han Test Area: 10m2

Model: ELO E(AIO Desktop), B432(Oki printer), S/N: A17C002919,AK760

PY3JN2000184 (CyberPower UPS) 22990A0, PY3JN2000184

Standard Referenced: FCC Part 15

Temperature: 26°C Humidity: 47% Pressure: 839mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Printing ballots

Test Engineer: Kevin Johnson

PR100763-11-RE.doc FR0100

Туре	Frequency (MHz)	Level (dBuV)	Transducer (dB/m)	Gain / Loss (dB)	Final (dBuV/m)	Azm(deg)/Pol/Hgt(m)	Margin: FCC Class B QP (dB)
QP	30.361	25.6	25.1	-29.7	21.0	211/V-Pole/3.83	8.53
QP	60.054	39.9	11.7	-29.2	22.4	85/V-Pole/2.40	7.17
QP	72.039	40.9	12.3	-28.9	24.2	66/V-Pole/1.80	5.31
QP	84.222	34.2	11.7	-28.7	17.2	252/V-Pole/2.09	12.36
QP	96.001	34.2	13.3	-28.5	19.0	82/V-Pole/1.41	14.05
QP	528.000	36.0	22.2	-27.8	30.4	137/V-Pole/2.50	5.13
QP	624.997	34.8	23.5	-27.6	30.7	358/V-Pole/1.91	4.85
QP	666.676	38.2	24.1	-27.5	34.8	184/V-Pole/2.00	0.73

The highest emission measured was at 666.676 MHz, which was 0.73 dB below the limit.

- > "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
 - PK = Peak Measurement: RBW is 120kHz, VBW is 3 MHz
 - QP = Quasi-Peak Measurement: RBW is 120kHz, VBW is 3 MHz, and QP Detection is ENABLED
 - AV = Video Average Measurement: RBW is 1 MHz, VBW is 10 Hz
- ➤ The "field strength" (FS) emissions level is attained by adding the received amplitude measured (RA), Antenna factor (AF), and cable factor (CF) minus the amplifier gain (AG). FS = RA + AF + CF AG . Final measurements are made with the Azimuth, Polarity, Height, and EUT Cables positioned for maximum radiation. If applicable, cables positions are noted in the test log. (Sample Calculation: 49.6 dBuV + 11.4 dB/m 28.8 dB (CF/AG) = 32.2 dBuV/m. Important Note: This is a sample calculation only for the purpose of demonstration, and does not reflect data in this report.)
- The "Azm/Pol/Hgt" indicates the turn-table *azimuth*, the antenna *polarity*, and the antenna *height* where the maximum emissions level was measured.
- The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.
- > The PRESCAN is a peak measurement and is performed with the RBW set to 120 kHz, VBW set to 3 MHz (30 MHz to 1 GHz), and the RBW set to 1 MHz, VBW set to 100 kHz (> 1 GHz)

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763 (client) Customer Representative: Stephen Han Test Area: 10m2 Model: ELO E(AIO Desktop), B432(Oki printer), S/N: A17C002919,AK760 PY3JN2000184 (CyberPower UPS) 22990A0, PY3JN2000184 Standard Referenced: FCC Part 15 Date: July 15, 2019

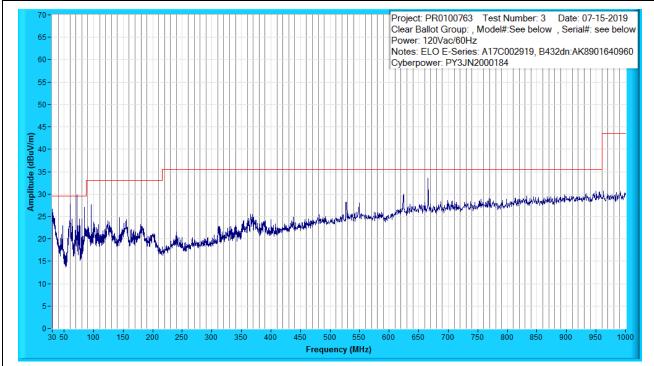


Figure A1: Radiated Emissions Prescan, 30MHz to 1000MHz, Peak Measurements at 10m Distance

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Num

(client)

Customer Representative: Stephen Han

Model: ELO E(AIO Desktop), B432(Oki printer),

PY3JN2000184 (CyberPower UPS)

Standard Referenced: FCC Part 15

Project Number: PR100763

Test Area: 10m2

S/N: A17C002919,AK760

22990A0, PY3JN2000184

Date: July 15, 2019

Figure A2: Radiated Emissions Test Setup – Front Side

PR100763

Radiated Emissions, FCC Part 15

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number:

(client)

Customer Representative: Stephen Han Test Area: 10m2

Model: ELO E(AIO Desktop), B432(Oki printer), S/N: A17C002919,AK760

PY3JN2000184 (CyberPower UPS) 22990A0, PY3JN2000184

Standard Referenced: FCC Part 15 Date: July 15, 2019

Figure A3: Radiated Emissions Test Setup – Right Side

PR100763

Radiated Emissions, FCC Part 15

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number:

(client)

Customer Representative: Stephen Han Test Area: 10m2

Model: ELO E(AIO Desktop), B432(Oki printer), S/N: A17C002919,AK760

PY3JN2000184 (CyberPower UPS) 22990A0, PY3JN2000184

Standard Referenced: FCC Part 15 Date: July 15, 2019

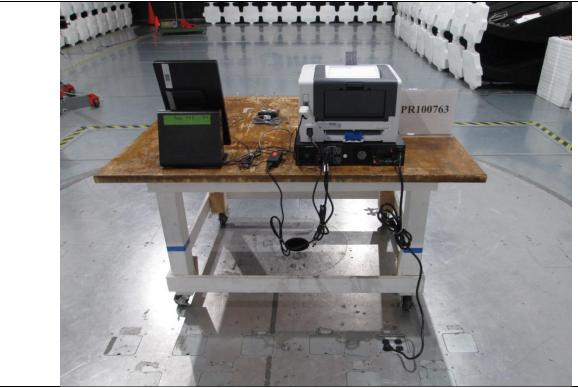


Figure A4: Radiated Emissions Test Setup – Back Side

FR0100

Radiated Emissions, FCC Part 15

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763

(client)

Customer Representative: Stephen Han Test Area: 10m2

Model: ELO E(AIO Desktop), B432(Oki printer), S/N: A17C002919,AK760

PY3JN2000184 (CyberPower UPS) 22990A0, PY3JN2000184

Standard Referenced: FCC Part 15 Date: July 15, 2019

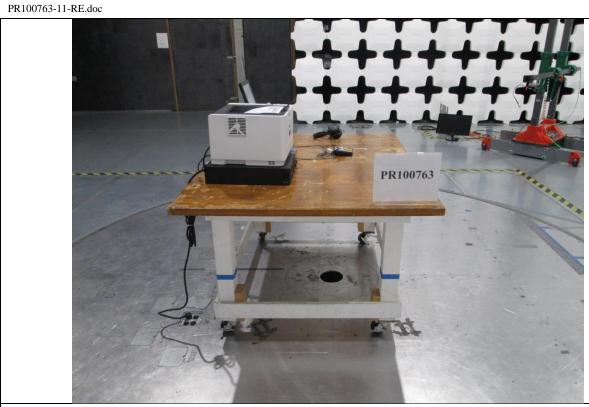


Figure A5: Radiated Emissions Test Setup –Left Side

Radiated Emissions, CISPR / EN 55011

Clear Ballot Group (manufacturer) Pro V&V Manufacturer: Project Number: PR100763

(client)

10m2 Customer Representative: Stephen Han Test Area:

Model: ELO E(AIO Desktop), B432(Oki printer), S/N:

A17C002919,AK760 PY3JN2000184 (CyberPower UPS) 22990A0,

PY3JN2000184

FR0100

Standard Referenced: FCC Part 15 Date: July 15, 2019

PR100763-11-RE.doc

Test Equipment List

1 1								
ID Number	Manufacturer Model # Serial # Description		Cal Date	Cal Due				
1220	Mini-Circuits	ZKL-2	NA	Preamp, 10 - 2000 MHz, 30 dB	11/18/2018	11/18/2019		
1223	Hewlett Packard	85650A	3303A01859	Quasi-Peak Adaptor	09/14/2018	09/14/2019		
1232	Sunol Sciences	JB1	A071605-2	Bilog Antenna, 30 MHz to 2.0 GHz	09/11/2018	09/11/2019		
1335	Hewlett Packard	85662A	2542A10937	Spectrum Analyzer Display	09/14/2018	09/14/2019		
1336	Hewlett Packard	8566B	2532A02062	Spectrum Analyzer RF Section	09/14/2018	09/14/2019		
1338	Hewlett Packard	85685A	3506A01551	RF Preselector	09/14/2018	09/14/2019		
1396	CIR Enterprises	10m Chamber #2	002	10m Chamber with 4m turntable	03/29/2018	03/29/2020		
1410	Sunol Sciences	SC110V	021611-1	System Controller 10meter #2	NA	NA		
1492	Fluke	87/5 Multimeter	23350032	True RMS Multimeter	05/09/2019	05/09/2020		
1500	Pacific Power Source	3060- MS/M93235	0871_08097	62KVA-175 AMP, Frequency 47- 500Hz, Power Supply	NA	NA		
1592	EMCI	CEAS	V4.1.2	Commercial Emissions Automation Software - 10M # 2	NA	NA		

842 mb

FR0100

Pressure:

Configuration 2:

Radiated Emissions, FCC Part 15

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763 (client) Customer Representative: Stephen Han Test Area: 10m2 ClearCast Model D Model: S/N: 041902577 Standard Referenced: FCC Part 15 July 24, 2019 Date:

Temperature: 75°C Humidity: 54%

Input Voltage: 120Vac/60Hz

Configuration of Unit: Printing ballots

Test Engineer: Mike Tidquist

PR100763-11-RE.doc

Туре	Frequency (MHz)	Level (dBuV)	Transducer (dB/m)	Gain / Loss (dB)	Final (dBuV/m)	Azm(deg)/Pol/Hgt(m)	Margin: FCC Class B QP (dB)
QP	30.575	28.2	25.0	-29.7	23.4	138/V-Pole/3.62	6.12
QP	38.442	33.5	19.3	-29.7	23.2	300/H-Pole/3.98	6.38
QP	133.250	39.4	18.1	-28.7	28.7	340/V-Pole/4.00	4.30
QP	231.729	44.6	15.4	-28.3	31.7	296/V-Pole/1.00	3.88
QP	382.811	37.2	19.3	-28.2	28.3	168/V-Pole/3.07	7.20
QP	700.346	25.4	24.5	-27.3	22.6	200/V-Pole/1.00	12.93
QP	882.921	25.1	26.4	-27.2	24.2	44/H-Pole/1.01	11.29
QP	993.318	24.8	27.6	-27.3	25.1	225/V-Pole/1.01	18.35

The highest emission measured was at 231.729 MHz, which was 3.88 dB below the limit.

- > "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
 - PK = Peak Measurement: RBW is 120kHz, VBW is 3 MHz
 - QP = Quasi-Peak Measurement: RBW is 120kHz, VBW is 3 MHz, and QP Detection is ENABLED
 - AV = Video Average Measurement: RBW is 1 MHz, VBW is 10 Hz
- ➤ The "field strength" (FS) emissions level is attained by adding the received amplitude measured (RA), Antenna factor (AF), and cable factor (CF) minus the amplifier gain (AG). FS = RA + AF + CF − AG .Final measurements are made with the Azimuth, Polarity, Height, and EUT Cables positioned for maximum radiation. If applicable, cables positions are noted in the test log. (Sample Calculation: 49.6 dBuV + 11.4 dB/m − 28.8 dB (CF/AG) = 32.2 dBuV/m. **Important Note**: This is a sample calculation only for the purpose of demonstration, and does not reflect data in this report.)
- > The "Azm/Pol/Hgt" indicates the turn-table *azimuth*, the antenna *polarity*, and the antenna *height* where the maximum emissions level was measured.
- The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.
- The PRESCAN is a peak measurement and is performed with the RBW set to 120 kHz, VBW set to 3 MHz (30 MHz to 1 GHz), and the RBW set to 1 MHz, VBW set to 100 kHz (> 1 GHz)

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763 (client) Customer Representative: Stephen Han Test Area: 10m2 Model: ClearCast Model D S/N: 041902577 Standard Referenced: FCC Part 15 Date: July 24, 2019 FR0100

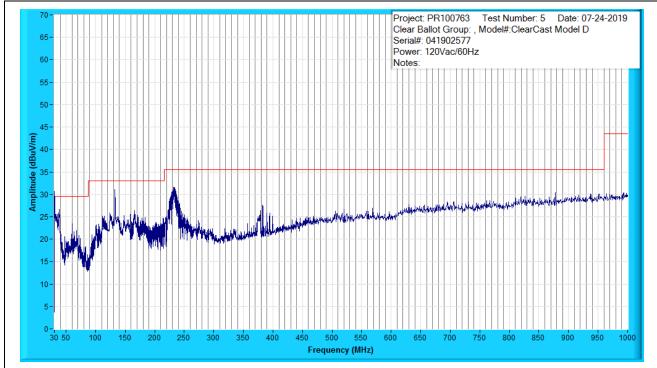


Figure A1: Radiated Emissions Prescan, 30MHz to 1000MHz, Peak Measurements at 10m Distance

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763

(client)

Customer Representative: Stephen Han Test Area: 10m2

Model: ClearCast Model D S/N: 041902577

Standard Referenced: FCC Part 15 Date: July 24, 2019

 $Figure\ A2:\ Radiated\ Emissions\ Test\ Setup-Front\ Side$

Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763 Manufacturer:

(client)

Customer Representative: Stephen Han Test Area: 10m2

Model: ClearCast Model D S/N:

041902577 Standard Referenced: FCC Part 15 Date: July 24, 2019

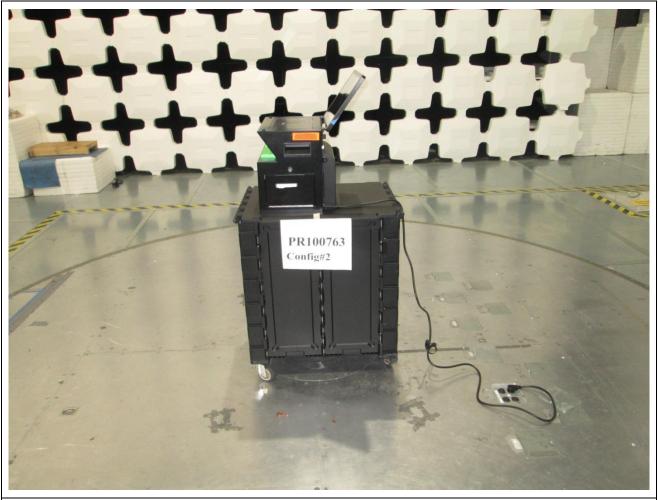
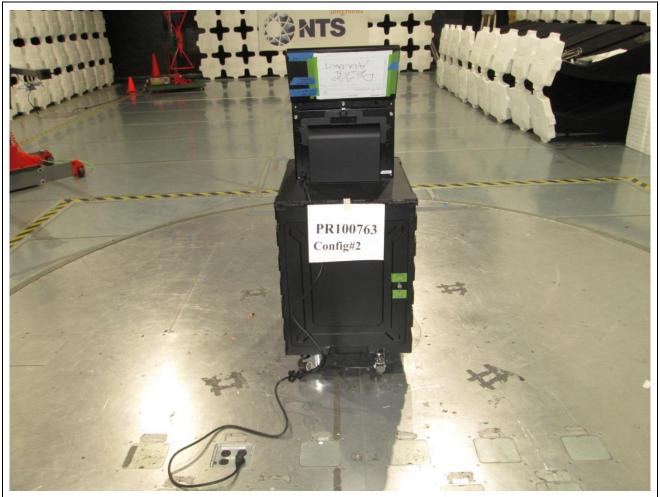


Figure A3: Radiated Emissions Test Setup – Right Side

FR0100


Radiated Emissions, FCC Part 15

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763

Customer Representative: Stephen Han Test Area: 10m2

Model: ClearCast Model D S/N: 041902577

Standard Referenced: FCC Part 15 Date: July 24, 2019

 $Figure\ A4:\ Radiated\ Emissions\ Test\ Setup-Back\ Side$

Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763 Manufacturer:

(client)

Customer Representative: Stephen Han Test Area: 10m2

Model: ClearCast Model D S/N:

041902577 Standard Referenced: FCC Part 15 Date: July 24, 2019

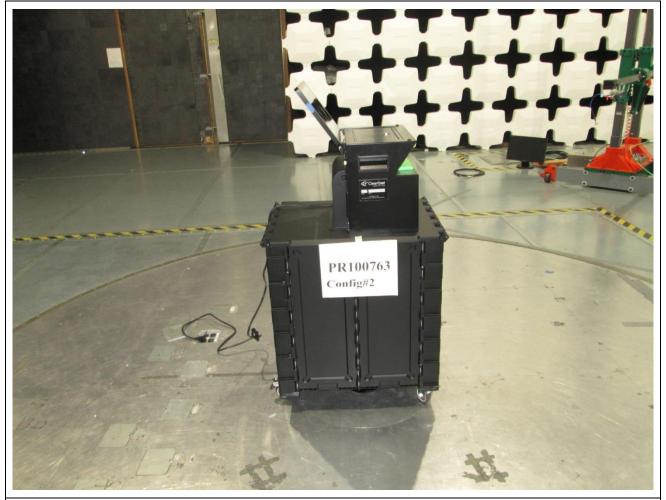


Figure A5: Radiated Emissions Test Setup – Left Side

FR0100

Radiated Emissions, FCC Part 15

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763

Customer Representative: Stephen Han Test Area: 10m2

Model: ClearCast Model D S/N: 041902577

Standard Referenced: FCC Part 15 Date: July 24, 2019
PR100763-11-RE.doc

Test Equipment List

Test Equipment Dist								
ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due		
1220	Mini-Circuits	ZKL-2	NA	Preamp, 10 - 2000 MHz, 30 dB	11/18/2018	11/18/2019		
1223	Hewlett Packard	85650A	3303A01859	Quasi-Peak Adaptor	09/14/2018	09/14/2019		
1232	Sunol Sciences	JB1	A071605-2	Bilog Antenna, 30 MHz to 2.0 GHz	09/11/2018	09/11/2019		
1335	Hewlett Packard	85662A	2542A10937	Spectrum Analyzer Display	09/14/2018	09/14/2019		
1336	Hewlett Packard	8566B	2532A02062	Spectrum Analyzer RF Section	09/14/2018	09/14/2019		
1338	Hewlett Packard	85685A	3506A01551	RF Preselector	09/14/2018	09/14/2019		
1396	CIR Enterprises	10m Chamber #2	002	10m Chamber with 4m turntable	03/29/2018	03/29/2020		
1410	Sunol Sciences	SC110V	021611-1	System Controller 10meter #2	NA	NA		
1492	Fluke	87/5 Multimeter	23350032	True RMS Multimeter	05/09/2019	05/09/2020		
1500	Pacific Power Source	3060- MS/M93235	0871_08097	62KVA-175 AMP, Frequency 47- 500Hz, Power Supply	NA	NA		
1592	EMCI	CEAS	V4.1.2	Commercial Emissions Automation Software - 10M # 2	NA	NA		

APPENDIX B: Conducted Emissions Test Data

S/N:

PR100763

22990A0,

A17C002919,AK760

Configuration 1:

Conducted Emissions, FCC Part 15

Standard Referenced:

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number:

(client)

Customer Representative: Stephen Han Test Area: 10m2

Model: ELO E(AIO Desktop), B432(Oki printer),

PY3JN2000184 (CyberPower UPS)

FCC Part 15 PY3JN2000184

Date: July 16, 2019

Temperature: 23°C Humidity: 62% Pressure: 838mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Printing ballots

Test Engineer: Kevin Johnson

PR100763-11-CE.doc FR0100

Type	Frequency (MHz)	Level (dBuV)	Transducer (dB)	Gain / Loss (dB)	Final (dBuV)	Test Point	Margin: FCC Class B AV (dB)	Margin: FCC Class B QP (dB)
AV	0.153	28.4	0.0	16.1	44.5	Line 1	11.42	-
QP	0.153	28.8	0.0	16.1	44.9	Line 1	-	21.02
AV	0.442	12.6	0.0	16.1	28.7	Line 1	18.94	-
QP	0.442	18.5	0.0	16.1	34.6	Line 1	-	23.07
AV	0.598	12.2	0.0	16.2	28.5	Line 1	17.52	-
QP	0.598	18.0	0.0	16.2	34.3	Line 1	-	21.74
AV	2.395	4.3	0.1	16.2	20.6	Line 1	25.41	-
QP	2.395	9.4	0.1	16.2	25.7	Line 1	-	30.31
AV	15.663	25.9	0.3	15.7	42.0	Line 1	8.03	-
QP	15.663	35.3	0.3	15.7	51.4	Line 1	-	8.62
AV	18.435	11.9	0.4	15.8	28.2	Line 1	21.80	-
QP	18.435	20.7	0.4	15.8	37.0	Line 1	-	23.04
AV	0.160	27.3	0.0	16.1	43.4	Neutral	12.28	-
QP	0.160	33.8	0.0	16.1	49.9	Neutral	-	15.78
AV	1.304	4.0	0.0	16.2	20.2	Neutral	25.84	-
QP	1.304	9.2	0.0	16.2	25.5	Neutral	-	30.54
AV	1.640	4.8	0.0	16.2	21.0	Neutral	25.03	-
QP	1.640	-5.6	0.0	16.2	10.7	Neutral	-	45.34
AV	1.723	5.0	0.0	16.2	21.2	Neutral	24.78	-
QP	1.723	7.5	0.0	16.2	23.7	Neutral	-	32.31
AV	15.575	18.7	0.3	15.7	34.8	Neutral	15.22	=
QP	15.575	24.7	0.3	15.7	40.8	Neutral	-	19.24
AV	21.012	2.5	0.5	15.9	18.9	Neutral	31.08	-
QP	21.012	6.1	0.5	15.9	22.5	Neutral	-	37.53

The highest emission measured was at 15.663 MHz, which was 8.03 dB below the limit.

- > "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
 - PK = Peak Measurement: RBW is 9 kHz, VBW is 3 MHz
 - QP = Quasi-Peak Measurement: RBW is 9 kHz, VBW is 3 MHz, and QP Detection is ENABLED
 - AV = Video Average Measurement: RBW is 9 kHz, VBW is 10 Hz
- The "field strength" (FS) emissions level is attained by adding the received amplitude measured (RA), Antenna factor (AF), and cable factor (CF) minus the amplifier gain (AG). FS = RA + AF + CF AG . Final measurements are made with the Azimuth, Polarity, Height, and EUT Cables positioned for maximum radiation. If applicable, cables positions are noted in the test log. (Sample Calculation: 49.6 dBuV + 11.4 dB/m 28.8 dB (CF/AG) = 32.2 dBuV/m. **Important Note**: This is a sample calculation only for the purpose of demonstration, and does not reflect data in this report.)
- The "TestPoint" indicates which AC or DC input power line or which I/O cable the measurement was made on.
- The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.
- The PRESCAN is a peak measurement and is performed with the RBW set to 9 kHz, and the VBW set to 3 MHz

S/N:

A17C002919,AK760

22990A0, PY3JN2000184

Conducted Emissions, FCC Part 15

Standard Referenced: FCC Part 15

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763

(client)

Customer Representative: Stephen Han Test Area: 10m2

> Model: ELO E(AIO Desktop), B432(Oki printer),

PY3JN2000184 (CyberPower UPS)

Date: July 16, 2019 PR100763-11-CE.doc

FR0100

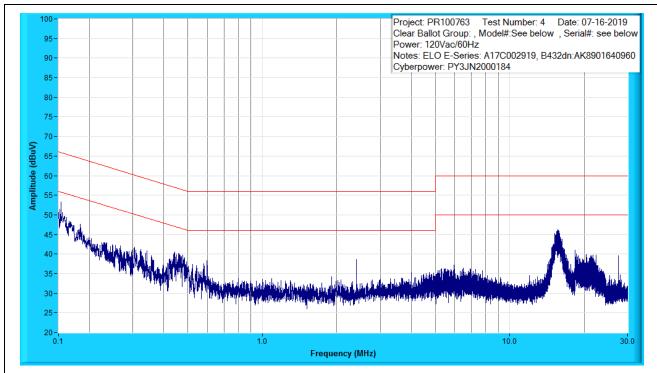
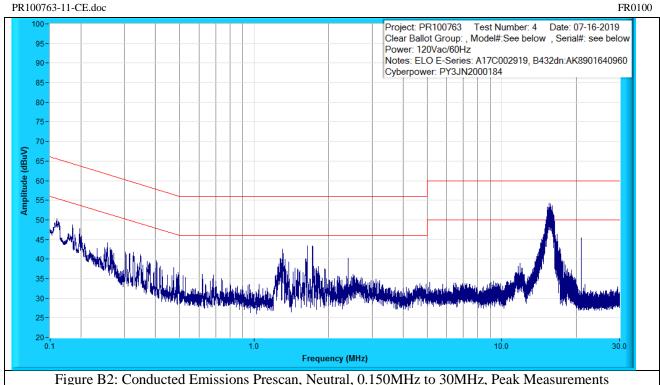


Figure B1: Conducted Emissions Prescan, Line 1, 0.150MHz to 30MHz, Peak Measurements

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763

(client)


Customer Representative: Stephen Han Test Area: 10m2

Model: ELO E(AIO Desktop), B432(Oki printer), S/N:

A17C002919,AK760 PY3JN2000184 (CyberPower UPS) 22990A0, PY3JN2000184

Date: July 16, 2019

Standard Referenced: FCC Part 15 PR100763-11-CE.doc

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763

(client)

Customer Representative: Stephen Han Test Area: 10m2

Model: ELO E(AIO Desktop), B432(Oki printer), S/N: A17C002919,AK760

PY3JN2000184 (CyberPower UPS) 22990A0, PY3JN2000184

Standard Referenced: FCC Part 15 Date: July 16, 2019

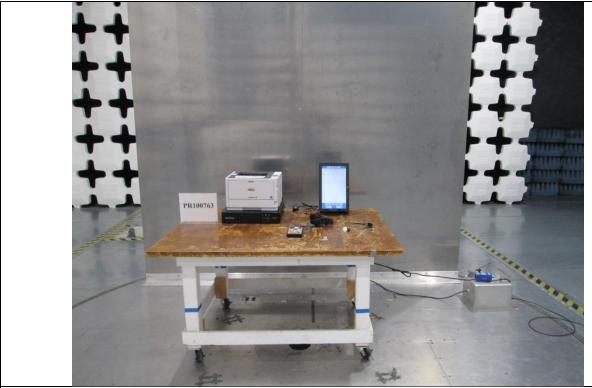


Figure B3: Conducted Emissions Test Setup – Front Side

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763

(client)

Customer Representative: Stephen Han Test Area: 10m2

Model: ELO E(AIO Desktop), B432(Oki printer), S/N: A17C002919,AK760

PY3JN2000184 (CyberPower UPS) 22990A0, PY3JN2000184

PY3JN2000184

Date: July 16, 2019

Standard Referenced: FCC Part 15 Date: July 16, 2019

PR100763-11-CE.doc FR0100

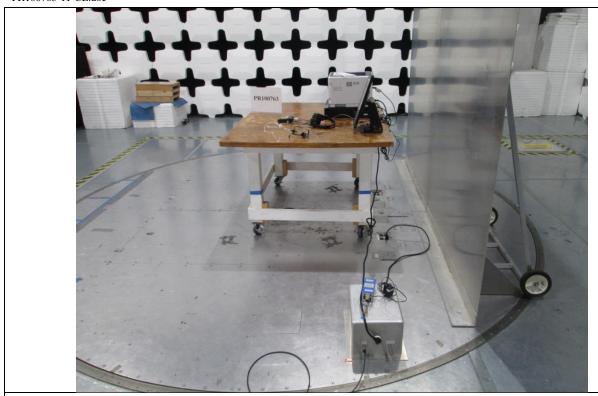


Figure B4: Conducted Emissions Test Setup – Right Side

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763

(client)

Customer Representative: Stephen Han Test Area: 10m2

Model: ELO E(AIO Desktop), B432(Oki printer), S/N: A17C002919,AK760

PY3JN2000184 (CyberPower UPS) 22990A0, PY3JN2000184

Standard Referenced: FCC Part 15 Date: July 16, 2019

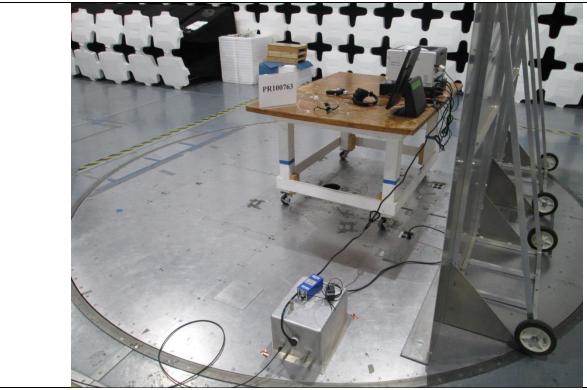


Figure B5: Conducted Emissions Test Setup – Back Side

Clear Ballot Group (manufacturer) Pro V&V Manufacturer: Project Number:

(client)

Customer Representative: Stephen Han Test Area: 10m2

> Model: ELO E(AIO Desktop), B432(Oki printer),

PY3JN2000184 (CyberPower UPS)

Standard Referenced: FCC Part 15

FR0100

S/N:

PR100763

22990A0, PY3JN2000184

Date: July 16, 2019

A17C002919,AK760

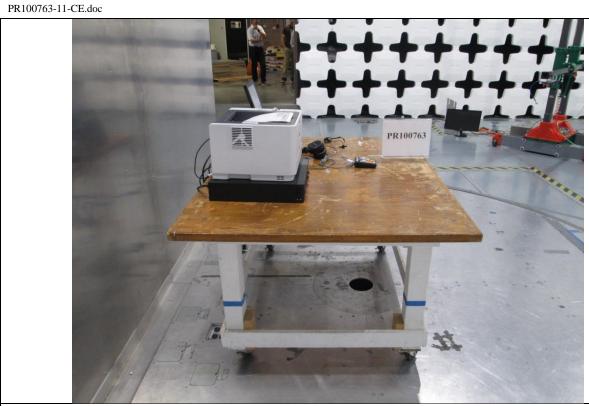


Figure B6: Conducted Emissions Test Setup – Left Side

PR100763

22990A0, PY3JN2000184

Date: July 16, 2019

A17C002919,AK760

Conducted Emissions, FCC Part 15

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number:

(client)

Customer Representative: Stephen Han Test Area: 10m2

Model: ELO E(AIO Desktop), B432(Oki printer),

PY3JN2000184 (CyberPower UPS)

Standard Referenced: FCC Part 15

PR100763-11-CE.doc

FR0100

S/N:

Test Equipment List

ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1201	Agilent Technology	11947A	3107A03805	Transient Limiter, 9 kHz to 200 MHz	03/29/2019	03/29/2020
1223	Hewlett Packard	85650A	3303A01859	Quasi-Peak Adaptor	09/14/2018	09/14/2019
1335	Hewlett Packard	85662A	2542A10937	2542A10937 Spectrum Analyzer Display		09/14/2019
1336	Hewlett Packard	8566B	2532A02062	Spectrum Analyzer RF Section	09/14/2018	09/14/2019
1338	Hewlett Packard	85685A	3506A01551	RF Preselector	09/14/2018	09/14/2019
1396	CIR Enterprises	10m Chamber #2	002	10m Chamber with 4m turntable	03/29/2018	03/29/2020
1492	Fluke	87/5 Multimeter	23350032	True RMS Multimeter	05/09/2019	05/09/2020
1556	EMCI	EMCI, 2 Phase LISN	10	150 kHz to 30 MHz, 277 Vac/400 Vdc, 50/60 Hz, 16 A	03/05/2019	03/05/2020
1592	EMCI	CEAS	V4.1.2	Commercial Emissions Automation Software - 10M # 2	NA	NA

Configuration 2:

Conducted Emissions, FCC Part 15

Configuration of Unit:

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763

(client)

Printing ballots

Customer Representative: Stephen Han Test Area: 10m2

Model: ClearCast Model D S/N: 041902577

Standard Referenced: FCC Part 15 Date: July 24, 2019

Temperature: 78°C Humidity: 48% Pressure: 842 mb

Input Voltage: 120Vac/60Hz

Test Engineer: Mike Tidavist

Test Engineer: Mike Tidquist

PR100763-11-CE.doc FR0100

Туре	Frequency (MHz)	Level (dBuV)	Transducer (dB)	Gain / Loss (dB)	Final (dBuV)	Test Point	Margin: FCC Class B AV (dB)	Margin: FCC Class B QP (dB)
AV	0.178	26.3	0.0	16.1	42.4	Line 1	12.77	-
QP	0.178	32.8	0.0	16.1	48.9	Line 1	-	16.29
AV	0.408	22.6	0.0	16.1	38.7	Line 1	9.91	-
QP	0.408	30.8	0.0	16.1	47.0	Line 1	-	11.68
AV	0.494	20.4	0.0	16.1	36.5	Line 1	9.65	-
QP	0.494	28.2	0.0	16.1	44.4	Line 1	-	11.81
AV	0.584	21.2	0.0	16.2	37.4	Line 1	8.59	ı
QP	0.584	28.3	0.0	16.2	44.5	Line 1	-	11.48
AV	0.903	9.4	0.0	16.2	25.7	Line 1	20.33	ı
QP	0.903	17.9	0.0	16.2	34.1	Line 1	-	21.91
AV	2.403	4.5	0.1	16.2	20.8	Line 1	25.21	ı
QP	2.403	11.2	0.1	16.2	27.4	Line 1	-	28.56
AV	13.765	8.8	0.3	15.8	25.0	Line 1	25.02	-
QP	13.765	20.3	0.3	15.8	36.4	Line 1	-	23.59
AV	0.165	26.6	0.0	16.1	42.8	Neutral	12.79	-
QP	0.165	29.8	0.0	16.1	45.9	Neutral	-	19.68
AV	0.403	23.6	0.0	16.1	39.8	Neutral	8.99	-
QP	0.403	31.8	0.0	16.1	48.0	Neutral	-	10.81
AV	0.494	20.6	0.0	16.1	36.8	Neutral	9.40	-
QP	0.494	28.2	0.0	16.1	44.4	Neutral	-	11.82
AV	0.539	16.9	0.0	16.1	33.1	Neutral	12.93	-
QP	0.539	25.4	0.0	16.1	41.6	Neutral	-	14.43
AV	0.587	20.9	0.0	16.2	37.1	Neutral	8.93	-
QP	0.587	28.5	0.0	16.2	44.8	Neutral	-	11.24
AV	11.114	9.9	0.4	15.9	26.2	Neutral	23.80	-
QP	11.114	17.8	0.4	15.9	34.0	Neutral	-	25.99
AV	13.567	9.5	0.3	15.8	25.6	Neutral	24.37	-
QP	13.567	20.4	0.3	15.8	36.5	Neutral	-	23.50

The highest emission measured was at 0.584 MHz, which was 8.59 dB below the limit.

- > "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
 - PK = Peak Measurement: RBW is 9 kHz, VBW is 3 MHz
 - QP = Quasi-Peak Measurement: RBW is 9 kHz, VBW is 3 MHz, and QP Detection is ENABLED
 - AV = Video Average Measurement: RBW is 9 kHz, VBW is 10 Hz
- ➤ The "field strength" (FS) emissions level is attained by adding the received amplitude measured (RA), Antenna factor (AF), and cable factor (CF) minus the amplifier gain (AG). FS = RA + AF + CF AG .Final measurements are made with the Azimuth, Polarity, Height, and EUT Cables positioned for maximum radiation. If applicable, cables positions are noted in the test log. (Sample Calculation: 49.6 dBuV + 11.4 dB/m 28.8 dB (CF/AG) = 32.2 dBuV/m. Important Note: This is a sample calculation only for the purpose of demonstration, and does not reflect data in this report.)
- The "TestPoint" indicates which AC or DC input power line or which I/O cable the measurement was made on.
- The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.
- > The PRESCAN is a peak measurement and is performed with the RBW set to 9 kHz, and the VBW set to 3 MHz

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763 (client) Customer Representative: Stephen Han Test Area: 10m2 Model: ClearCast Model D S/N: 041902577 Standard Referenced: FCC Part 15 Date: July 24, 2019

PR100763-11-CE.doc FR0100

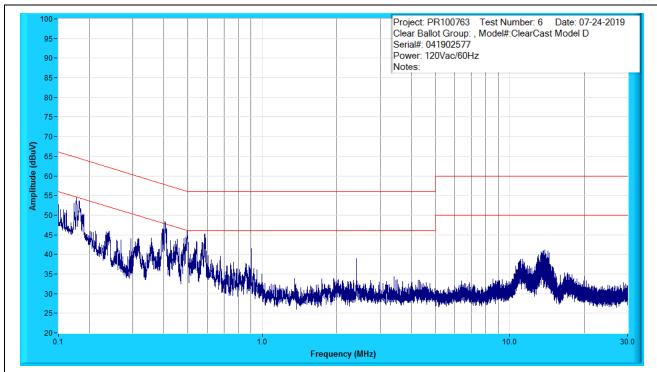


Figure B1: Conducted Emissions Prescan, Line 1, 0.150MHz to 30MHz, Peak Measurements

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763 (client) Customer Representative: Stephen Han Test Area: 10m2 Model: ClearCast Model D S/N: 041902577 Standard Referenced: FCC Part 15 Date: July 24, 2019

PR100763-11-CE.doc FR0100

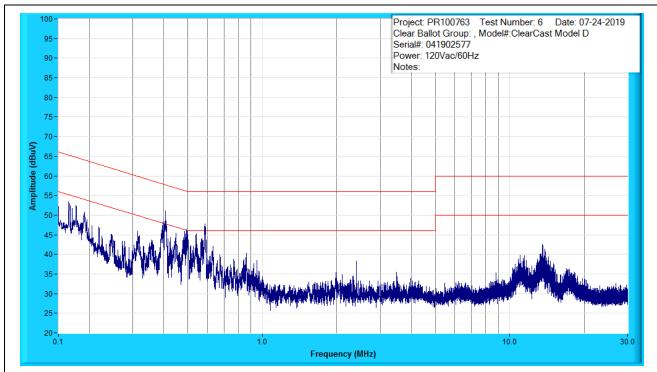


Figure B2: Conducted Emissions Prescan, Neutral, 0.150MHz to 30MHz, Peak Measurements

Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763 Manufacturer:

(client)

Customer Representative: Stephen Han Test Area: 10m2

Model: ClearCast Model D S/N:

041902577 FCC Part 15 Standard Referenced: Date: July 24, 2019

PR100763-11-CE.doc FR0100

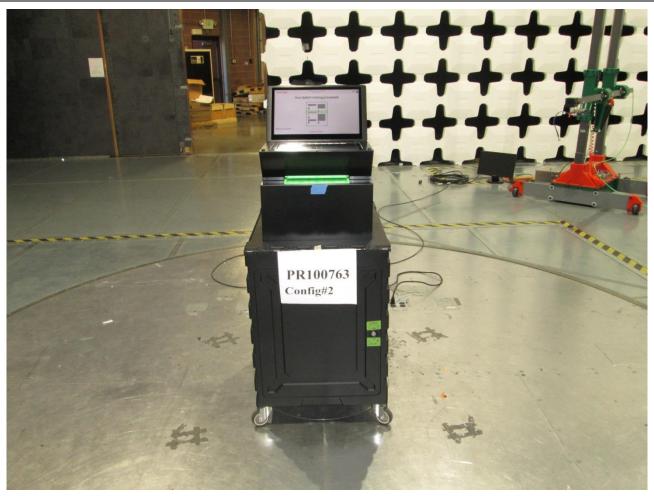


Figure B3: Conducted Emissions Test Setup – Front Side

Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763 Manufacturer:

(client)

Customer Representative: Stephen Han Test Area: 10m2

Model: ClearCast Model D S/N:

041902577 FCC Part 15 Standard Referenced: Date: July 24, 2019

PR100763-11-CE.doc FR0100

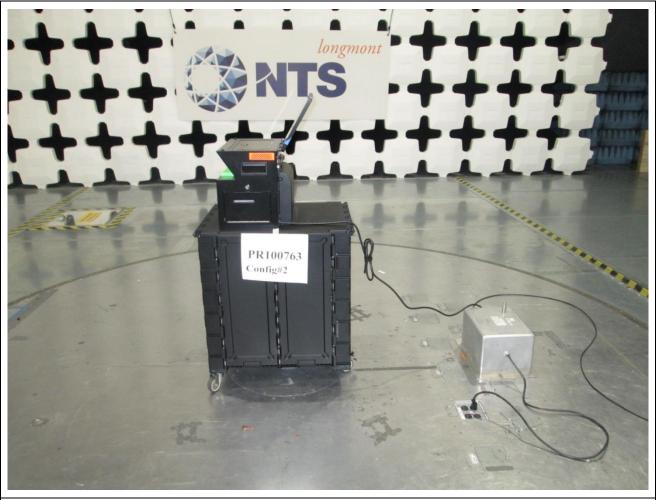


Figure B4: Conducted Emissions Test Setup – Right Side

Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763 Manufacturer:

(client)

Customer Representative: Stephen Han Test Area: 10m2

Model: ClearCast Model D S/N:

041902577 Standard Referenced: FCC Part 15 Date: July 24, 2019

PR100763-11-CE.doc FR0100

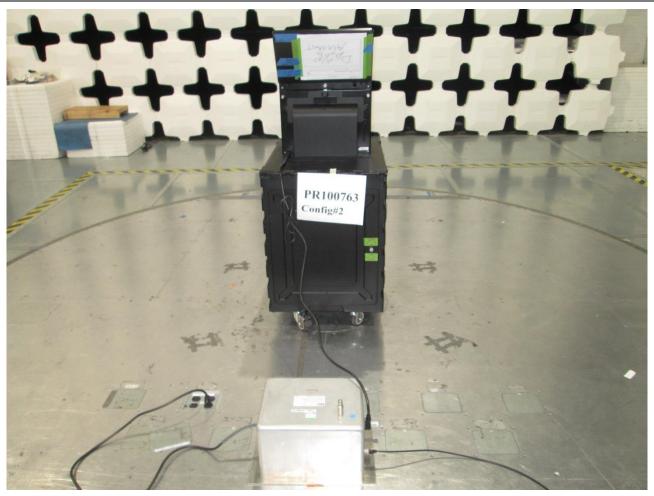


Figure B5: Conducted Emissions Test Setup – Back Side

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763

(client)

Customer Representative: Stephen Han Test Area: 10m2

Model: ClearCast Model D S/N: 041902577

Standard Referenced: FCC Part 15 Date: July 24, 2019

PR100763-11-CE.doc FR0100

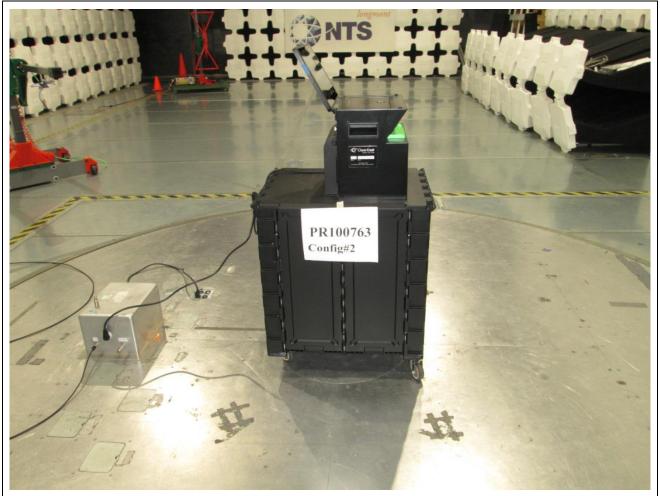


Figure B6: Conducted Emissions Test Setup – Left Side

Manufacturer: Clear Ballot Group (manufacturer) Pro V&V Project Number: PR100763

Customer Representative: Stephen Han Test Area: 10m2

Model: ClearCast Model D S/N: 041902577

Standard Referenced: FCC Part 15 Date: July 24, 2019

PR100763-11-CE.doc

FR0100

Test Equipment List

ID Number	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
1201	Agilent Technology	11947A	3107A03805	Transient Limiter, 9 kHz to 200 MHz	03/29/2019	03/29/2020
1223	Hewlett Packard	85650A	3303A01859	Quasi-Peak Adaptor	09/14/2018	09/14/2019
1335	Hewlett Packard	85662A	2542A10937	Spectrum Analyzer Display	09/14/2018	09/14/2019
1336	Hewlett Packard	8566B	2532A02062	Spectrum Analyzer RF Section	09/14/2018	09/14/2019
1338	Hewlett Packard	85685A	3506A01551	RF Preselector	09/14/2018	09/14/2019
1396	CIR Enterprises	10m Chamber #2	002	10m Chamber with 4m turntable	03/29/2018	03/29/2020
1492	Fluke	87/5 Multimeter	23350032	True RMS Multimeter	05/09/2019	05/09/2020
1556	EMCI	EMCI, 2 Phase LISN	10	150 kHz to 30 MHz, 277 Vac/400 Vdc, 50/60 Hz, 16 A	03/05/2019	03/05/2020
1592	EMCI	CEAS	V4.1.2	Commercial Emissions Automation Software - 10M # 2	NA	NA

APPENDIX C: Product Data Sheet

Configuration 1:

1.0 Client Information

Client Information					
Manufacturer Name	Clear Ballot Group (manufacturer) Pro V&V (client)				
Address	700 Boulevard South Suite 102				
City	Huntsville	Huntsville			
State	AL				
Zip Code	35802				
Client Representative	Stephen Han				
Title	Project Engineer				
Phone	256-713-1111				
Fax	256-713-1112				
Email	stephen.han@provandv.com				

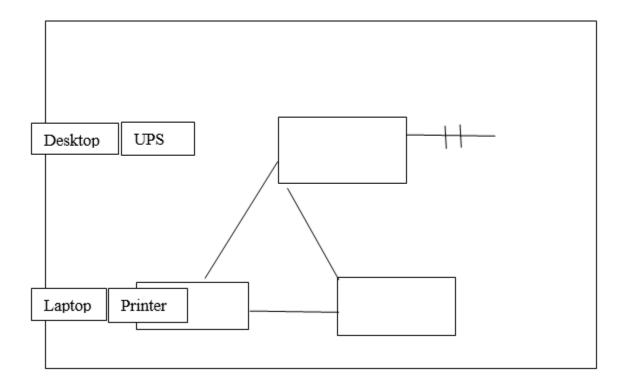
2.0 Product Information - General

1 Todast Information Concrai					
ClearAccess					
ClearAccess					
ballot marking device					
Regular and audio					
Yes					
Both					
IT					
no					
Multiple					
Multiple					
No					
EAC 2005 VVSG Volumes I and II					
Used for voting during elections					
Yes. printers, varies laptops, UPS					
Yes.					
15 minutes					
2 minutes but UUT will be on UPS					
well as MAXIMUM associated cable lengths below					
I/O Type Longth Patient					
UUT- UUT (m) Connect? QTY					
UUT - SE (III) (See Note)					
devices.					

3.0 Power

Power Requirements	
Does/can product connect to AC mains?	Yes.
(If so, can the UUT function when connected to AC?)	
Input Voltage Rating as it appears on unit, power supply,	n/a
or power brick	
Input Current (specify @ 230 Vac/50 Hz)	
Single or Multi-Phase	single
(If multi-phase, specify delta or wye)	
Is input power connector two-prong (Hot & Neutral) or	3 prong
3-prong (H, N, Ground)	
Does UUT have more than 1 power cord? (If yes,	No
explain.)	

4.0 Unit Under Test (UUT) – Detailed Information


UUT Hardwa	UUT Hardware							
Condition		New						
Configuration During Test Printing Ballots								
Input Power		Normal	AC power					
UUT Compo	nents							
Name	Mod	el No.	Seria	al No.	Description			
ELO]	Е	A17C	002919	AIO Desktop			
Oki		132		22990A0	Printer			
CyberPower	PR150	0RT2U	PY3JN	2000184	UPS			
I/O Cabling								
See Section 2	.0 for de	tails						
UUT Softwa	re/Firm	ware						
Name	,	Version/R	Revision	Functionality				
ClearAccess		2.0.0	Oh	Voting systems software				
UUT Operat								
List all frequencies generated/used by the				n/a				
product.	1							
How will product be exercised during test?				Printing ballots				
How will product be monitored during test? What are the product's critical parameters?				Visually				
				Unit keeps printing				
Specify tolera	nce of all	l critical p	arameters.	Unit keeps p	rinting			

5.0 Support Equipment (SE) – Detailed Information

Support Equip	ment (SE)							
Name	Model No.	Serial No.		Description				
MonoPrice		CBG-HP-02		Headph	ones			
Storm	8button	17020511		AT	I			
Zebra	DS457	18285000501808		Bar code s	scanner			
SE I/O Cabling								
Model No.		Description		Shielded?	Length	Quantity		
Generic		USB		N	>3M	1		
Generic		3.5mm Headphone jack		N	>3M	1		
SE Software/Fi	rmware							
Name	Version/F	Revision Functionality						
			n/a					

6.0 Block Diagram

Important note: The product data sheet is a critical piece of documentation which is used as the basis for any test reports that NTS will generate; it must be completed *prior* to testing. It should be reviewed carefully by the client. If incorrect information is provided resulting in revisions to test repor

Configuration 2:

1.0 Client Information

Manufacturer Name Clear Ballot Group (manufacturer) Pro V&V (client)					
Manufacturer Name	Clear Ballot Group (manufacturer) Pro V&V (client)	Clear Ballot Group (manufacturer) Pro V&V (client)			
Address	700 Boulevard South Suite 102				
City	Huntsville	Huntsville			
State	AL	AL			
Zip Code	35802				
Client Representative	Stephen Han				
Title	Project Engineer				
Phone	256-713-1111				
Fax	256-713-1112	256-713-1112			
Email	stephen.han@provandv.com				

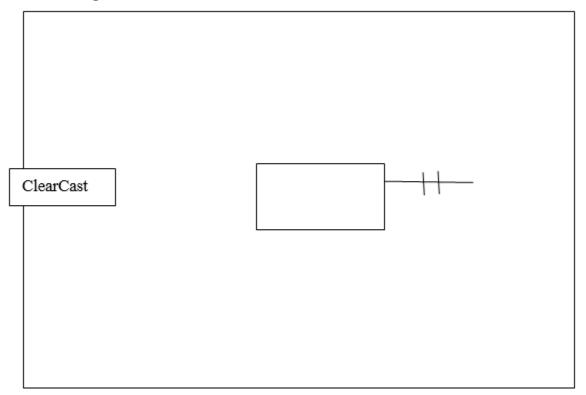
2.0 Product Information - General

Product Inform	Product Information						
Product Name (as	s it should appear on test report)	ClearCa	ast				
Model Number (of UUT to be tested)	ClearCast					
Functional descri	ption of product (what is it, what does it	Precinc	t Tabula	itor			
do, etc.)							
List all modes of	1	Regular	ſ				
	erated simultaneously? If so, explain.	Yes					
	ll be used for testing?	Both					
Product type (IT,	Medical, Scientific, Industrial, etc.)	IT					
	intentional radiator	no					
Product Dimension	ons						
Product Weight							
Will fork lift be r	equired	No					
Applicable Stand	ards, if known	EAC 2005 VVSG Volumes I and II					
Describe all envir	ronment(s) where product will be used	Used for voting during elections					
	mercial, industrial, etc.)						
	sist of multiple components? (If yes,	No					
•	ach system component)						
	conds? (If yes, how long?)	Yes. 5 sec					
	y generated frequency						
Product Set-up T		15 minutes					
Boot up time in the	he event of an unintentional power down	0 minutes - internal backup battery					
Identify ALL I/O	connections on the unit(s) under test, as v	vell as M	AXIM	U M asso	ociated ca	ble lengths b	elow
Model No.	Description		I/O T	Гуре UUT	Length (m)	Patient Connect?	QTY
			UUT	- SE	(111)	(See Note)	
	power						
Note: "Patient C	Connect" column applies only to medical d	evices.	•	•			

3.0 Power

Power Requirements	
Does/can product connect to AC mains?	Yes.
(If so, can the UUT function when connected to AC?)	
Input Voltage Rating as it appears on unit, power supply,	n/a
or power brick	
Input Current (specify @ 230 Vac/50 Hz)	Normal
Single or Multi-Phase	single
(If multi-phase, specify delta or wye)	
Is input power connector two-prong (Hot & Neutral) or	3 prong
3-prong (H, N, Ground)	
Does UUT have more than 1 power cord? (If yes,	No
explain.)	

4.0 Unit Under Test (UUT) – Detailed Information


UUT Hardware						
Condition	New					
Configuratio During Test	n Scannin	g ballots				
Input Power	Normal	AC power				
UUT Compo	onents					
Name	Model No.	Seria	al No.	Description		
ClearCast	D	0419	02593	Precinct Tabulator		
I/O Cabling						
See Section 2	A for details					
Name	re/Firmware Version/F	Parriaian		Functionality		
ClearCast	2.0		Voting systems software			
CicarCast	2.0	.0		voting systems software		
UUT Operat	ing Conditions					
	ncies generated/us	ed by the				
product.			n/a			
How will prod	How will product be exercised during test?			Scanning Ballots		
	How will product be monitored during test?			Visually		
	product's critical p		Unit keeps scanning			
Specify tolera	nce of all critical p	arameters.	Unit keeps scar	nning		

5.0 Support Equipment (SE) – Detailed Information

Support Equipment (SE)							
Name	Model No.	Seria	ıl No.	No. Description			
n/a							
SE I/O Cabling							
Model No.		Descr	ription		Shielded?	Length	Quantity
n/a							
SE Software/Fi	rmware						
Name	Version/F	Revision		F	unctionality		
n/a					-		

6.0 Block Diagram

Important note: The product data sheet is a critical piece of documentation which is used as the basis for any test reports that NTS will generate; it must be completed *prior* to testing. It should be reviewed carefully by the client. If incorrect information is provided resulting in revisions to test reports

APPENDIX D: Test Log

EMI\ENV Test Log

Manufacturer:	Pro V&V	Project Number:	PR100763
Model:	Config#1(Clear Vote 2.0)	S/N:	A17C002919
	E (ELO)		AK76022990A0
	B432 (Oki)		PY3JN2000184
	PR1500RT2U (CyberPower)		Config#2:041902577
	Config#2(ClearCast Model D)		
Customer Representative:	Michael Walker		
Standard Referenced:	FCC		

FR0105

10m Emissions

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials
RE	6001	July 15, 2019	Initial Product Set-up & Configuration		1.0	Complete	KJ
		1230-1330	Engineering / Trouble-Shoot				
			Test#1: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter distance				
			AMBIENT SCAN				
RE	1342	1330-1430	Test#2: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter distance		2.0	Fail	KJ
			120Vac/60Hz				
			ELO E-Series: A17C002919				
			B432dn: AK76022990A0				
			Cyberpower: PY3JN2000184				
			Config#1				
			NOTE: Client says unpopulated ports on the UPS are diagnostic only.				
			UUT failed at 666.676MHz by 3.31dB				
RE		1430-1630	Test#3: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter distance		2.0	Pass	KJ
			120Vac/60Hz				
			ELO E-Series: A17C002919				
			B432dn: AK8901640960				
			Cyberpower: PY3JN2000184				
			Config#1				
			NOTE: Client says unpopulated ports on the UPS are diagnostic only.				
			Client changed out the printer to the backup printer				
			B432dn: AK8901640960				
CE	2341	July 16, 2019	Test#4: 150kHz – 30MHz		2.0	Pass	KJ
		0800-1000	Config#1				
			120Vac/60Hz				

10m Emissions

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials
4-3	4398	1000	Radiated RF Immunity (10m 2)				KJ
			(4.1.2.10) (Config. #1)				
			10V/m, 80 - 1000 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell				
			120 VAC / 60 Hz				
			Printing and script stopped. Field was not on.				
			Printing and script stopped at 167.7689MHz. Right side, H-pole. Printer power off, PC re-booted				
			Printing and script stopped at 101MHz. Rights side, H-pole. Printer power off, PC re-booted				
			PC has the following error message "Warning- logs are not valid"				
			Printing and script stopped at 564MHz. Rights side, H-pole. Printer power off, PC re-booted				
			Battery in the UPS is at 18%. Client believes that the battery is too low to hold the unit up. When the unit prints it does switch to battery power.				
			Client will try to put a new battery in the UPS.				
			Testing resumed after putting a new battery in the UPS.				
			Unit had a paper jam at 710MHz. back side, V-pole				
			Finished everything tested but right side.				
RE	1342	July 24, 2019 0800-1000	Test #5: Radiated Emissions: 30MHz – 1GHz, 8 rads, 4 heights, 3 second dwell, ref level = 80dB, 10 meter distance		2.0	Pass	MT
			120Vac/60Hz				
CE	2341	1000-1100	Test #6: Conducted Emissions, 150 kHz - 30 MHz		1.0	Pass	MT
			120 VAC / 60 Hz				
		1100-1200	Setup For RI		1.0	Complete	MT
		1200-1230	Lunch				MT
			Running Radiated Immunity in 10M #2 Chamber				
4-3	4398	1230-1630	Radiated RF Immunity (10m 2)		4.0		MT
			(Config. #2)				
			10V/m, 80 - 1000 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell				
			120 VAC / 60 Hz				
			Front and Right side both polarities complete. Back Side Vertical polarity complete. Still need Back Horizontal and left side both Polarities.				
4-3		July 25, 2019	Continue:		4.0	Pass	MT
		0800-1200	Radiated RF Immunity (10m 2)				
			(Config. #2)				
			10V/m, 80 - 1000 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell				
			120 VAC / 60 Hz				

Regular hours: 19.0

10m Emissions

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials
			Overtime/Prem hou	ırs:			
			Total hou	ırs:	19.0		

Ground Planes / CALC

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials
4-4	4411	July 17, 2019	Equipment setup		1.5		CL
		0800 - 0930					
		0930 - 1030	Waiting on correct paper to be brought over.		1.0		CL
		1030 - 1100	Electrical Fast Transient / Burst (4.1.2.6) (Config. #2) Mains: +/- 2kV, I/O: +/- 1kV 120 VAC / 60 Hz		.5	Pass	CL
4-2	4254	1100 - 1330	Electrostatic Discharge (4.1.2.8) (Config. #1) +/- 8kV Contact, +/-2, 4, 8, 15kV Air 120 VAC / 60 Hz		2.5	Pass	CL

Project #: Work Order #: 2019052202A PO#: Amount:

B90622

Company: Pro V&V Contact: Michael Walker Model#:

700 Boulevard South Email: Serial #:

Suite 102 michael.walker@provandv.com

Huntsville, AL 35802 Phone: 256-713-11111

Fax:

Test Notes: Voting Machine Testing

Formal test reports

		Quoted Work				
Date	Test Code	Description	Standard	Result	Cost	Billed
July 15, 2019	1342	Radiated Emissions, 30 MHz - 1 GHz (4.1.2.9) (Config. #1) 30 MHz - 1 GHz 120 VAC / 60 Hz	FCC Part 15, Class B	Pass		
July 24, 2019	1342	Radiated Emissions, 30 MHz - 1 GHz (4.1.2.9) (Config. #2) 30 MHz - 1 GHz 120 VAC / 60 Hz	FCC Part 15, Class B	Pass		
July 24, 2019	2341	Conducted Emissions, 150 kHz - 30 MHz (4.1.2.9) (Config. #2) 120 VAC / 60 Hz	FCC Part 15, Class B	Pass		
July 16, 2019	2341	Conducted Emissions, 150 kHz - 30 MHz (4.1.2.9) (Config. #1) 120 VAC / 60 Hz	FCC Part 15, Class B	Pass		
	4254	Electrostatic Discharge (4.1.2.8) (Config. #1) +/- 8kV Contact, +/-2, 4, 8, 15kV Air 120 VAC / 60 Hz	EN61000-4-2			
July 17, 2019	4254	Electrostatic Discharge (4.1.2.8) (Config. #2) +/- 8kV Contact, +/-2, 4, 8, 15kV Air 120 VAC / 60 Hz	EN61000-4-2	Pass		
July 24, 2019	4398	Radiated RF Immunity (10m 2) (4.1.2.10) (Config. #2) 10V/m, 80 - 1000 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell 120 VAC / 60 Hz	EN61000-4-3	Pass		
	4398	Radiated RF Immunity (10m 2) (4.1.2.10) (Config. #1) 10V/m, 80 - 1000 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell 120 VAC / 60 Hz	EN61000-4-3			

		Quoted Work				
Date	Test Code	Description	Standard	Result	Cost	Billed
	4411	Electrical Fast Transient / Burst	EN61000-4-4			
		(4.1.2.6) (Config. #1)				
		Mains: +/- 2kV, I/O: +/- 1kV				
		120 VAC / 60 Hz				
July 17, 2019	4411	Electrical Fast Transient / Burst	EN61000-4-4	Pass		
		(4.1.2.6) (Config. #2)				
		Mains: +/- 2kV, I/O: +/- 1kV				
	4506	120 VAC / 60 Hz	ENIC1000 4.5			
	4596	Surge Immunity	EN61000-4-5			
		(4.1.2.7) (Config. #1) Mains: +/- 2kV CM, +/- 2kV DM, (0, 90, 180, 270)				
		120 VAC / 60 Hz				
	4596	Surge Immunity	EN61000-4-5			
	4370	(4.1.2.7) (Config. #2)	L1101000-4-3			
		Mains: +/- 2kV CM, +/- 2kV DM, (0, 90, 180, 270)				
		120 VAC / 60 Hz				
	4622	Conducted RF Immunity	EN61000-4-6			
		(4.1.2.11) (Config. #1)				
		10Vrms, 0.15 - 80 MHz, 1% Step, 80% AM, 1kHz				
		sine, 3s dwell				
		120 VAC / 60 Hz				
	4622	Conducted RF Immunity	EN61000-4-6			
		(4.1.2.11) (Config. #2)				
		10Vrms, 0.15 - 80 MHz, 1% Step, 80% AM, 1kHz sine, 3s dwell				
		120 VAC / 60 Hz				
	4831	Power Frequency H-Field Immunity	EN61000-4-8			
		(4.1.2.12) (Config. #2)				
		30A/m, 50 / 60 Hz, 3 axes				
		120 VAC / 60 Hz				
	4831	Power Frequency H-Field Immunity	EN61000-4-8			
		(4.1.2.12) (Config. #1)				
		30A/m, 50 / 60 Hz, 3 axes				
		120 VAC / 60 Hz				
	4194	Voltage Dips and Interruptions	EN61000-4-11			
		(Surge of +/- 15%) (4.1.2.5) (Config. #1)				
		Surge of +/- 15% line variation of nominal line				
		voltage 120 VAC / 60 Hz				
	4194	Voltage Dips and Interruptions	EN61000-4-11			
	71/4	(Surge of +/- 15%) (4.1.2.5) (Config. #2)	L1101000-4-11			
		Surge of +/- 15% line variation of nominal line				
		voltage				
		120 VAC / 60 Hz				
	4193	Voltage Dips and Interruptions	EN61000-4-11			
		(4.1.2.5) (Config. #2)				
		70% nom, 0.6 cycles / 40% nom, 6 cycles & 1 sec. /				
		0% nom, 300 cycles				
		120 VAC / 60 Hz				

		Quoted Work				
Date	Test Code	Description	Standard	Result	Cost	Billed
	4193	Voltage Dips and Interruptions (4.1.2.5) (Config. #1) 70% nom, 0.6 cycles / 40% nom, 6 cycles & 1 sec. / 0% nom, 300 cycles 120 VAC / 60 Hz	EN61000-4-11			
	4196	Voltage Dips and Interruptions (Inc./Red. of Nom. Voltage)(4.1.2.5)(Conf # Electric power increases of 7.5% and reductions of 12.5% of nominal specified power. (See Protocol) 120 VAC / 60 Hz	EN61000-4-11			
	4196	Voltage Dips and Interruptions (Inc./Red. of Nom. Voltage)(4.1.2.5)(Conf # Electric power increases of 7.5% and reductions of 12.5% of nominal specified power. (See Protocol) 120 VAC / 60 Hz	EN61000-4-11			
July 15, 2019	6001	Initial Product Set-up & Configuration Engineering / Trouble-Shoot		Complete		
	9040	Emissions Test Report - Soft Copy One Report, Two Configurations				
	9010	Immunity Test Report - Soft Copy One Report, Two Configurations				

	Unquoted Work					
Date	Test Code	Description	Cost	Billed		

Modifications Required For Compliance				
Test	Description of Modification	Client Initials		

APPENDIX E: Laboratory Accreditations

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

NATIONAL TECHNICAL SYSTEMS (NTS) - LONGMONT 1736 Vista View Drive Longmont, CO 80504-5242 Mr. Eric Loucks Phone: 870 574 0031

ELECTRICAL

Valid To: February 29, 2020 Certificate Number: 0214.43

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following Electromagnetic Compatibility/Interference (EMC/EMI). Lightning, Transient, Surge, and Product Safety tests:

Lightning, Transient, Stage, and Frods	crouncy resis.
Test Technology:	Test Method(s) ^{1,2} :
Emissions	
Radiated and Conducted	CFR 47 FCC, Parts 15B (using ANSI C63.4:2014), and 18 (using MP-5:1986); ANSI C63.4:2009; CISPR 32, Ed. 1 (2012-01); EN 55032:2012/AC:2013; AS/NZS CISPR 22 (2002); AS/NZS 3548 (1997); AS/NZS CISPR 14-1 (2003); IEC/CISPR 14-1, Ed. 4 (2003); IEC 61000-3-12, Ed. 2.0 (2011); EN 61000-3-12 (2011); IEC 61000-6-1, Ed. 2 (2005-03); IEC 61000-6-2, Ed. 2.0 (2005-01); IEC 61000-6-3 (1996); EN 61000-6-3 (2001) + A1 (2004); EN 61000-6-4 (2007); KN 32:2015 (Annex 11); KN 22; KN 11
Harmonics	IEC 61000-3-2, Ed. 2.2 (2004-11); IEC 61000-3-2, Ed. 3.0 (2005) + A1 (2008) + A2 (2009); IEC 61000-3-2, Ed. 4.0 (2014-05)
Flicker	IEC 61000-3-3, Ed. 1.1 (2002-03); EN 61000-3-3 + A1 (2001); IEC 61000-3-3, Ed. 1.1 (2003) + A2 (2005); IEC 61000-3-3, Ed. 3.0 (2013-05)
Immunity	
Electrostatic Discharge (ESD)	IEC 61000-4-2 (2001); EN 61000-4-2 (2001) + A2 (2001); EN 61000-4-2 + A1 (1998) + A2 (2001); IEC 61000-4-2, Ed. 2.0 (2008-12); EN 61000-4-2 (2009-05); KN 61000-4-2; KN 61000-4-2 (2008-5); KN 61000-4-2 (Annex 1-1)
Radiated	IEC/EN 61000-4-3, Ed. 2.1 (2002) + A1 (2002); EN 61000-4-3; IEC 61000-4-3 (1995) + A1 (1998) + A2 (2000); EN 61000-4-3 (2002) + A1 (2002); IEC 61000-4-3, Ed. 3.0 (2006-02) + A1 (2007) + A2 (2010); EN 61000-4-3 (2006) + A1 (2008) + A2 (2010); KN 61000-4-3; KN 61000-4-3 (2008-5); KN 61000-4-3 (Annex 1-2)
(A2LA Cert. No. 0214.43) 10/08/2018	Page 1 of 4

(A2LA Cert. No. 0214.43) 10/08/2018

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8515 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

<u>Test Technology:</u> <u>Test Method(s)^{1,2}:</u>

Immunity (cont'd)

Electrical Fast Transient/Burst IEC 61000-4-4, Ed. 2.0 (2004-07); EN 61000-4-4 (2004);

EN 61000-4-4:2012; IEC 61000-4-4 (2012-04);

KN 61000-4-4; KN 61000-4-4 (2008-5);

KN 61000-4-4 (Annex 1-3)

Surge IEC 61000-4-5, Ed. 2.0 (2005-11); EN 61000-4-5;

IEC 61000-4-5, Ed. 3.0 (May 2014); BS EN 61000-4-5 (2006); EN 61000-4-5: 2014; KN 61000-4-5; KN 61000-4-5 (2008-5);

KN 61000-4-5 (Annex 1-4); IEEE C62.41.1 (2002);

IEEE C62.41.2 (2002); IEEE C62.45 (2002)

Conducted IEC 61000-4-6, Ed. 2.1 (2004); EN 61000-4-6;

EN 61000-4-6 (1996) +A1 (2001);

IEC 61000-4-6, Ed. 2.2 (2006-05); IEC 61000-4-6, Ed. 3.0 (2008);

IEC 61000-4-6, Ed. 4.0 (2013); EN 61000-4-6 (2009); EN 61000-4-6 (2014); KN 61000-4-6; KN 61000-4-6 (2008-5);

KN 61000-4-6 (Annex 1-5)

Power Frequency Magnetic Field IEC 61000-4-8 (2001) + A1 (2000);

EN 61000-4-8 (2001) + A1 (2000);

EN 61000-4-8 (1993) + A1 (2001); IEC 61000-4-8 (2009); EN 61000-4-8:2010; KN 61000-4-8; KN 61000-4-8 (2008-5);

KN 61000-4-8 (Annex 1-6)

Voltage Dips, Short IEC 61000-4-11, Ed. 2 (2004-03); EN 61000-4-11;

Interruptions, and Voltage EN 61000-4-11 (1994) + A1 (2001); EN 61000-4-11 (2004);

Variations KN 61000-4-11; KN 61000-4-11 (2008-5);

KN 61000-4-11 (Annex 1-7)

Product Safety

Medical Electrical IEC 60601-1-2, Ed. 3.0 (2007); KN 60601-1-2 (2008-5); Equipment IEC 60601-1-2, Ed. 4, (2014-02); EN 60601-1-2 (2007);

EN 60601-1-2 (2015)

Generic/Product Family Standards

and Industry Standards

Generic Standards EN 61326-1: 2013; KN 35: 2015

Information Technology IEC/CISPR 22 (1997); EN 55022 (1998) + A1 (2000);

Equipment IEC/CISPR 22 (1993); EN 55022 (1994);

IEC/CISPR 22 (1993); EN 55022 (1994) + A1 (1995) + A2 (1997);

CNS 13438 (1997);

IEC/CISPR 22, Ed. 4 (2003-04); EN 55022 (1998); IEC/CISPR 22, Ed. 5 (2005); EN 55022 (1998); IEC/CISPR 22, Ed. 5 (2005) + A1 (2005); EN 55022 (1998) + A1 (2000) + A2 (2003);

(A2LA Cert. No. 0214.43) 10/08/2018

Page 2 of 4

Test Technology:

Test Method(s)1,2:

Generic/Product Family Standards and Industry Standards (cont'd)

Information Technology Equipment (cont'd)

CNS 13438 (2006) (up to 6 GHz);

IEC/CISPR 22, Edition 5.2 (2006-03); EN 55022 (2006); EN 55022 (2006) + A1 (2007); EN 55022-2010;

EN 55022 (2006) + A1 (2007); EN 55022:2010; IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2009);

TCVN 7189:2009 (CISPR 22:2006);

VCCI V-3 (2009.04, 2011.04, 2013.04, 2014.04, 2015.04) (up to 6 GHz); CISPR 24 Ed 2.0 (2010-08); EN 55024 (2010);

KN 24

Industrial, Scientific, and Medical (ISM) Equipment AS/NZS CISPR 11 (2002); IEC/CISPR 11, Ed. 4.1 (2004-06);

AS/NZS CISPR 11 (2004);

IEC/CISPR 11, Ed. 4.1 (2004-06) + A1 (2004); EN 55011 (1998) + A1 (1999) + A2 (2002);

IEC/CISPR 11 (2003); EN 55011 (1998) + A2(2002);

EN 55011 (2009) + A1 (2010); IEC/CISPR 11 Ed. 5 (2009-05);

CISPR 11 Ed. 5.1 (2010)

Measure

IEC 61326-1 Ed. 2.0 (2013)

Military/Defense

MIL-STD-461F, G Method CE101 (30 Hz to 10 kHz);

MIL-STD-461F, G Method CE102 (10 kHz to 10 MHz); MIL-STD-461F, G Method CE106 (10 kHz to 40 GHz); MIL-STD-461F, G Method CS101 (30 Hz to 150 kHz);

MIL-STD-461F, G Method CS106;

MIL-STD-461F, G Method CS114 (10 kHz to 200 MHz);

MIL-STD-461F, G Method CS115;

MIL-STD-461F, G Method CS116 (10 kHz to 100 MHz); MIL-STD-461F, G Method RE101 (30 Hz to 100 kHz); MIL-STD-461F, G Method RE102 (10 kHz to 18 GHz); MIL-STD-461F, G Method RE103 (10 kHz to 40 GHz);

MIL-STD-461F, G Method RS101 (30 Hz to 100 kHz); MIL-STD-461F, G Method RS103 (2 MHz to 40 GHz);

MIL-STD-704 D, E, F;

MIL-HDBK-704-8 Method LDC101; MIL-HDBK-704-8 Method LDC102; MIL-HDBK-704-8 Method LDC103; MIL-HDBK-704-8 Method LDC104; MIL-HDBK-704-8 Method LDC105; MIL-HDBK-704-8 Method LDC201; MIL-HDBK-704-8 Method LDC301; MIL-HDBK-704-8 Method LDC302; MIL-HDBK-704-8 Method LDC302; MIL-HDBK-704-8 Method LDC401;

MIL-HDBK-704-8 Method LDC501; MIL-HDBK-704-8 Method LDC601

(A2LA Cert. No. 0214.43) 10/08/2018

Page 3 of 4

¹ When the date, revision or edition of a test method standard is not identified on the scope of accreditation, the laboratory is expected to be using the current version within one year of the date of publication, per part C., Section 1 of A2LA R101 - General Requirements- Accreditation of ISO-IEC 17025 Laboratories. If a specifier/regulator imposes a different transition period, this will supersede the A2LA one-year implementation period.

On the following types of products:

Telecommunication Equipment, Network Equipment, Industrial and Commercial Equipment, Electronic (Digital) Equipment, Medical, Aerospace, Military. Information Technology Equipment, Multimedia Equipment, Scientific Equipment

Testing Activities Performed in Support of FCC Declaration of Conformity and Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1³

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Unintentional Radiators</u> Part 15B	ANSI C63.4:2014	18000
Industrial, Scientific, and Medical Equipment Part 18	FCC MP-5 (February 1986)	18000

³Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (https://apps.fcc.gov/oetcf/eas/) for a listing of FCC approved laboratories.

(A2LA Cert. No. 0214.43) 10/08/2018

Page 4 of 4

² The laboratory is only accredited for testing activities outlined within the test methods listed above. Reference to any other activity within these standards, such as risk management or risk assessment, does not fall within the laboratory's accredited capabilities.

Accredited Laboratory

A2LA has accredited

NATIONAL TECHNICAL SYSTEMS (NTS) - LONGMONT

Longmont, CO

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 8th day of October 2018.

President and CEO For the Accreditation Council Certificate Number 0214.43 Valid to February 29, 2020

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

END OF REPORT